

Comune di Tradate

TAVOLA

01.01

PROGETTO ESECUTIVO

AFFIDAMENTO DEI SERVIZI DI PROGETTAZIONE DEFINTIVA, ESECUTIVA E COORDINA-MENTO DELLA SICUREZZA IN FASE DI PROGETTAZIONE CON FACOLTA' DI AFFIDAMENTO EX ART. 63 c. 5 D.Lgs. 50/2016 DEL SERVIZIO DI DIREZIONE LAVORI E COORDINAMENTO DELLA SICUREZZA IN FASE DI ESECUZIONE, RELATIVAMENTE ALL'INTERVENTO DI RIGENERAZIONE URBANA DI CAPANNONE INDUSTRIALE PER LA CREAZIONE DI UN NUOVO MUSEO DELLA MOTOCICLETTA FRERA, RISTORANTE, AULE STUDIO BIBLIOTECA PARCHEGGI E SISTEMAZIONI ESTERNE.

CUP C68I21000260001

Project Building Art s.r.l.

Project Building Art s.r.l.

Via Pavia, 22 - 00161 Roma
P. Iva/C.F. 10355621003

AMEDINISTRATORE UNICO
Arch. Pasquale Barone

COLLABORATORI

Arch. Viola D'Ettore Arch. Cecilia Marati Arch. Paolo Monesi Arch. Michele Preiti Arch. Maria Simonetti Ing. Ilario Greco Ing. Rosario Ierardi

Ing. Cosimo Mellone

RUP

DIREZIONE LAVORI

FLABORATO

CORPO IN CLS - RELAZIONE AI SENSI DEL CAP. 10.2 DELLE NTC 18

SCALA

DATA

GIUGNO 2023

REV.	DATA	DESCRIZIONE REVISIONE	ESEGUITO	CONTROLLATO	APPROVATO
01	MARZO 2023	EMISSIONE PROGETTO DEFINITIVO			
02					
03					
04					

EdiLusProgettazione e Calcolo Strutturale

DOCUMENTAZIONE DI AFFIDABILITÀ

Basi Teoriche Algoritmi Impiegati Casi Prova

Ai sensi del:

D.M. 17/01/2018 cap. 10 - Norme Tecniche per le Costruzioni

ACCA software S.p.A.

Contrada Rosole 13 - 83043 BAGNOLI IRPINO (AV) - Italy

INDICE

BASI TEORICHE - ALGORITMI IMPIEGATI - CASI PROVA

PREM	1ESSA	<u> 3</u>
2.1	CARATTERISTICHE DEL SOLUTORE MICROSAP	3
2.2	LA LIBRERIA DEGLI ELEMENTI FINITI	4
2.2.1	Beam	4
2.2.2	Plate/Shell (Lastre Piane)	5
2.3	PROPRIETÀ DEI MATERIALI	5
2.4		
2.5		
2.6	MODULO BEAM20 LINEARE	7
2.7	MODULO BEAM22 NON LINEARE	12
2.8	MODULO SHELL LINEARE	15
2.9		
CONE	DIZIONI DI CARICO	24
TIPI	DI ANALISI	25
4.1	Analisi Statica	25
4.2		
4.3	Analisi Statica Non Lineare	29
PROG	GETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI	34
LINK	CASI PROVA	36
	SOLU 2.1 2.2 2.2.1 2.2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 CONI TIPI 4.1 4.2 4.3 PROC	2.2 LA LIBRERIA DEGLI ELEMENTI FINITI 2.2.1 Beam 2.2.2 Plate/Shell (Lastre Piane). 2.3 PROPRIETÀ DEI MATERIALI. 2.4 NODI E GRADI DI LIBERTÀ 2.5 RELAZIONI MASTER-SLAVE 2.6 MODULO BEAM20 LINEARE. 2.7 MODULO BEAM22 NON LINEARE. 2.8 MODULO SHELL LINEARE. 2.9 MODULO SHELL LINEARE CONDIZIONI DI CARICO. TIPI DI ANALISI. 4.1 Analisi Statica. 4.2 Analisi Modale.

1 PREMESSA

Il presente documento ha lo scopo di chiarire le modalità con cui vengono effettuati i calcoli eseguiti dal programma di calcolo EdiLus e di verificare l'affidabilità dei risultati.

Occorre precisare comunque che in un calcolo ingegneristico, oltre l'affidabilità del codice di calcolo utilizzato, possono intervenire in maniera decisiva le scelte compiute dal progettista.

Il documento si compone di una sintetica trattazione teorica sulla modellazione strutturale effettuata e sul calcolo che viene eseguito; essa è affiancata ad una serie di esempi applicativi semplici e riproducibili, in cui vengono confrontati i risultati ottenuti da EdiLus con quelli derivanti da trattazioni teoriche o da altri solutori di riconosciuta affidabilità.

EdiLus consente di modellare la struttura, di effettuare la progettazione e le verifiche di tutti gli elementi strutturali e di generare gli elaborati grafici esecutivi.

È una procedura integrata dotata di tutte le funzionalità necessarie per consentire il calcolo completo di una struttura mediante il metodo degli elementi finiti (*FEM*).

La modellazione della struttura è realizzata tramite elementi *Beam* (travi e pilastri) e *Shell* (platee, pareti, setti, solette, travi parete), anche su suolo elastico alla Winkler.

L'input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in un'apposita finestra, viene generato dinamicamente dal software sulla base delle impostazioni effettuate dal progettista.

Apposite funzioni consentono la creazione e la manutenzione di archivi contenenti Sezioni, Materiali e Carichi; tali archivi sono di tipo generale e nel rispetto delle diverse prescrizioni normative possono essere comunque integrati e/o modificati dall'utente.

L'utente non può modificare il codice ma soltanto esequire delle scelte come quelle riportate di sequito:

- definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
- modificare i parametri necessari alla definizione dell'azione sismica;
- definire condizioni di carico;
- definire gli impalcati come infinitamente rigidi nel proprio piano ai fini dell'analisi sismica (tutto o in parte) o meno.

2 SOLUTORE MICROSAP TESYS ®

Nel presente capitolo vengono descritti i concetti teorici su cui si fonda il solutore MicroSap Tesys® adottato da EdiLus. La descrizione è relativa alla soluzione delle incognite strutturali e alle sollecitazioni di calcolo agenti sulle varie parti della struttura.

L'analisi numerica della struttura viene condotta con l'utilizzo del metodo degli elementi finiti (FEM).

Il metodo degli elementi finiti consiste nel simulare il modello continuo della struttura con un modello discreto equivalente. La funzione di spostamento è approssimata da un polinomio algebrico, definito in regioni, in grado di interpolare il valore di spostamento definito in punti discreti (i nodi).

Gli elementi finiti utilizzati ai fini della corretta modellazione della struttura saranno di seguito descritti.

Il modello di calcolo può essere analizzato nell'ipotesi di impalcato rigido, in funzione della reale presenza di solai continui atti a irrigidire tutto l'impalcato, o nell'ipotesi di solai rigidi nel caso si fosse in presenza di impalcati non orizzontali (coperture), non regolari (con rientranze, sporgenze e/o fori di elevate dimensioni), sfalsati, ecc.

Tali ipotesi vengono realizzate attraverso l'introduzione di adeguate relazioni cinematiche tra i gradi di libertà dei nodi costituenti l'impalcato o i campi di solai e i gradi di libertà del nodo "master" posizionato nel centro di massa dell'impalcato o dei campi di solai.

2.1 CARATTERISTICHE DEL SOLUTORE MICROSAP

Il solutore Microsap è costituito da un'unità principale (MICROSAP) e da una serie di moduli, indipendenti tra loro, che sono eseguiti sotto il controllo dell'unità principale a seconda delle caratteristiche del problema da risolvere. Ad esempio, differenti moduli di programma sono eseguiti se il problema è di tipo dinamico anziché statico, o se fa uso di elementi piastra (SHELL) piuttosto che di elementi trave (BEAM) o, viceversa se usa entrambi gli elementi.

Attualmente il flusso del programma Microsap può svolgersi secondo lo schema seguente:

- a) Modulo INPUT. E' sempre eseguito come primo modulo. In esso sono elaborati i dati relativi alla geometria della struttura e alle condizioni di vincolo.
- b) Modulo elementi: BOUND, TRUSS, BEAMX, PLANE, SOLID, SHELL. Sono sempre eseguiti dopo INPUT. Generalmente solo alcuni di essi sono utilizzati nella risoluzione di un problema. Se la struttura contiene elementi Boundary sarà richiamato BOUND. Se sono presenti elementi Truss, sarà richiamato TRUSS. Se la struttura contiene elementi Beam, sarà usato BEAMX. Per gli elementi Q₄, Q₆, QM₅ sarà invece richiamato PLANE. Una struttura (o parte di essa), schematizzata con elementi solidi esaedrici o prismatici richiederà l'esecuzione del modulo SOLID. Gli elementi di lastra piana e curva sono elaborati nel modulo SHELL. L'ordine con cui essi sono eseguiti segue quello scelto dall'operatore nella assegnazione dei dati. I moduli elementi costruiscono le matrici di rigidezza, di massa e le matrici sforzi-spostamenti di tutti gli elementi del modello.
- c) Modulo SOLVE. E' eseguito sempre dopo i moduli elementi. Esso assembla la matrice di rigidezza globale, i carichi nodali e la matrice di massa. Risolve quindi il sistema globale di equazioni e trova gli spostamenti nodali.
- d) Modulo EIGEN. E' eseguito dopo SOLVE, solo se è richiesta l'analisi dinamica. Nel caso di analisi modale trova frequenze proprie e modi di vibrare. Se è richiesta l'analisi spettrale, esso produce, per ogni modo, il vettore spostamenti nodali in regime dinamico. Da essi il successivo modulo STRES potrà poi calcolare le forze nodali equivalenti, gli sforzi ed effettuarne la composizione. EIGEN può essere ripetuto dall'operatore variando alcuni dati di input senza ripetere l'intera procedura. Nell'analisi della Risposta Armonica EIGEN non è usato.
- e) Modulo STRES. E' sempre eseguito come ultimo modulo e segue SOLVE o EIGEN. Esso consente la generazione e l'esame dei risultati finali del calcolo: spostamenti nodali, forme modali, sforzi negli elementi. Può essere ripetuto dall'operatore, variando alcuni parametri, come ad esempio l'unità di output sulla quale rappresentare i risultati.

2.2 LA LIBRERIA DEGLI ELEMENTI FINITI

I vari oggetti che compongono la struttura vengono schematizzati nel solutore di EdiLus come elementi. Tali elementi vengono automaticamente associati dal programma agli oggetti inseriti in fase di input.

La libreria attualmente disponibile comprende quei tipi di elementi che garantiscono le migliori prestazioni in rapporto all'impegno richiesto all'utente nella preparazione dei dati. La loro efficienza è provata dalla numerosa bibliografia esistente e dal loro ampio impiego nei più noti programmi di analisi strutturale.

Nello stesso modello strutturale possono coesistere più gruppi di elementi affini, o di differente tipologia.

Il programma provvede in automatico alla conversione degli oggetti introdotti in fase di input in elementi di calcolo. Al lancio del calcolo viene generata in automatica la mesh agli elementi finiti relativa alla struttura.

2.2.1 Beam

E' un elemento tridimensionale a due nodi e sezione prismatica. Può trasmettere azione assiale, momento torcente, taglio e momento flettente biassiali per un totale di 12 gradi di libertà. E' consentita la presenza di vincoli interni e il legame master-slave con altri nodi della struttura.

E' possibile, oltre all'usuale vincolo di continuità, svincolare qualunque spostamento o rotazione agli estremi. La definizione master-slave consente invece la schematizzazione di una gran varietà di situazioni strutturali particolari.

Ha un vasto impiego in differenti tipi di strutture e, principalmente, nell'analisi di telai piani e spaziali, strutture a geometria generica basata su membrature trave/pilastro, travi continue, e così via.

E' possibile definire un qualunque numero di caratteristiche geometriche delle sezioni e dei materiali e qualunque tipo di carico concentrato o ripartito. Per sezioni o carichi particolari e più ricorrenti nella pratica, l'input dei dati è notevolmente semplificato. Molto versatile e spedita si presenta inoltre l'introduzione di carichi di gravità o, più in generale, di componenti di accelerazione in più direzioni e secondo fattori moltiplicativi.

L'analisi dinamica può essere condotta assegnando la densità dei materiali, la massa per unità di lunghezza, o attribuendo masse nodali concentrate.

La trave può essere definita su suolo elastico alla Winkler agente in due direzioni ortogonali contemporaneamente. I carichi possono essere assegnati senza alcuna limitazione entro l'asta, senza ricorso a nodi intermedi. La trave su suolo elastico può ricevere tutti i carichi di libreria, con le stesse modalità impiegate per le travi senza suolo elastico (forze e momenti concentrati, carichi ripartiti con legge lineare e parzialmente estesi sull'asta, salti termici e gradienti termici, precompressione).

Libreria di carichi di elemento

Ogni set di carico sull'asta può essere composto con un qualunque numero e tipo di carico scelti tra i sequenti:

- Interferenza assiale.
- Precarico assiale.
- Salto termico assiale.
- Gradiente termico lungo due direzioni trasversali.
- Forza concentrata assiale.
- Momento torcente concentrato.
- Momento torcente parzialmente ripartito con legge lineare.
- Carico assiale parzialmente ripartito con legge lineare.
- Forza concentrata perpendicolare all'asta e definibile secondo due direzioni principali ortogonali.
- Carico perpendicolare all'asta, parzialmente ripartito con legge lineare e orientato secondo due direzioni principali ortogonali.
- Momento flettente concentrato agente lungo due direzioni principali ortogonali.
- Precompressione con cavi a tratti rettilinei e parabolici disposti su due piani ortogonali e con estremità comunque posizionate lungo l'asta ed entro la sezione.
- Calcolo delle azioni interne e degli spostamenti fino ad un massimo di 11 sezioni lungo l'asta (estremità + 9 stazioni interne). La posizione delle sezioni interne può essere definita in modo automatico (equispaziate) oppure assegnata esplicitamente, eventualmente per ogni singola asta

2.2.2 Plate/Shell (Lastre Piane)

L'elemento Plate/Shell è definito di forma triangolare.

E' possibile definire un qualunque numero di materiali a comportamento isotropo, con caratteristiche meccaniche eventualmente dipendenti dalla temperatura. Sono assegnabili carichi termici (mediante l'assegnazione delle temperature nodali), pressioni costanti o idrostatiche sulle facce, accelerazioni, gradiente termico lungo lo spessore. E' possibile la definizione dell'elemento su suolo elastico.

L'analisi dinamica può essere eseguita attribuendo la densità dei materiali o masse concentrate ai nodi. In uscita sono date le forze e i momenti riferiti al centroide dell'elemento e al suo sistema locale. Sono inoltre calcolati gli sforzi totali, gli sforzi principali e la sigma di Von Mises sulla faccia superiore e inferiore.

2.3 PROPRIETÀ DEI MATERIALI

Il materiale utilizzato nel calcolo ha un comportamento isotropo ed omogeneo con un legame costitutivo elastico-lineare. I parametri atti a definire le sue caratteristiche meccaniche sono il modulo di elasticità longitudinale E ed il coefficiente di Poisson. Le altre caratteristiche del materiale sono costituite dal peso specifico e dal coefficiente di dilatazione termico. Il modulo elastico tangenziale G è calcolabile con la sequente formula, nota dalla teoria dell'elasticità:

$$G = \frac{E}{2 \cdot \left(1 + \nu\right)}$$
 .

Il modulo elastico longitudinale E è sempre positivo ed il coefficiente di Poisson v deve soddisfare la seguente limitazione:

$$0 \le v < 0.5$$
.

2.4 NODI E GRADI DI LIBERTÀ

I nodi nell'analisi FEM hanno una notevole importanza in quanto rappresentano i punti in cui vengono definite le funzioni interpolanti degli spostamenti (funzioni di forma). Dopo la risoluzione del sistema di equazione lineare che governa l'equilibrio della struttura è possibile conoscere gli spostamenti di tutti i nodi della struttura, che rappresentano le uniche incognite del problema.

I nodi vengono creati in automatico dal programma che provvede ad inserirli nelle discontinuità strutturali, nell'intersezione degli elementi strutturali ed internamenti ad oggetti bidimensionali (platee, solette, pareti) dopo la creazione della mesh.

Le componenti di spostamento e rotazione dei nodi nello spazio rappresentano i gradi di libertà del nodo. Ogni nodo ha dunque sei gradi di libertà (tre traslazioni e tre rotazioni rispetto al sistema di riferimento globale). Gli eventuali vincoli applicati ai nodi sopprimono i gradi di libertà i quali vengono ignorati come incognite ed

utilizzati ai fini del calcolo delle reazioni vincolari. Le reazioni vincolari vengono esplicate in direzione dei gradi di libertà bloccati.

Lo spostamento di un nodo può anche essere limitato mediante l'applicazione di molle che rappresentano delle rigidezze aggiuntive applicate ai nodi.

Sui nodi possono applicarsi anche delle forze o dei momenti concentrati.

2.5 RELAZIONI MASTER-SLAVE

Ogni modellazione di una struttura può essere eseguita imponendo delle relazioni cinematiche tra gli spostamenti dei nodi chiamati slave e gli spostamenti di un nodo "rappresentativo" denominato master. Nel caso di impalcato rigido la relazione cinematica che lega i nodi slave dell'impalcato a quello master è rappresentato dal campo di spostamenti di un corpo rigido.

La presente nota chiarisce alcuni aspetti relativi all'uso del legame master/slave.

- 1) Un nodo master può appartenere a qualunque tipo di elemento.
- 2) Un nodo slave può appartenere ad elementi beam e shell.
- 3) Un nodo master può ricevere i contributi di rigidezza e massa da nodi slave.
- 4) Un nodo master può quindi anche non essere connesso ad alcun elemento. In tal caso i gradi di libertà non accoppiati a slave devono essere soppressi
- 5) Le forze concentrate su nodi slave sono ricondotte al nodo master, eventualmente aggiungendo gli opportuni momenti di trasporto.
- 6) Le masse concentrate su nodi slave sono ricondotte al nodo master, eventualmente aggiungendo gli opportuni momenti di inerzia polari $m_i(x_m-x_s)^2$, $m_i(y_m-y_s)^2$, $m_i(z_m-z_s)^2$ (tutti quelli interessati dall'accoppiamento rigido).
- 7) Il Microsap utilizza la definizione della matrice di massa 'a masse concentrate'; le matrici di massa degli elementi sono diagonali con soli termini traslanti. La matrice di massa globale è diagonale e può ricevere sia componenti di traslazione e rotazione tramite la linea dati 'carichi concentrati' del modulo SOLVE.
- 8) Le relazioni di equilibrio dell'impalcato rigido definito, ad esempio, su un piano parallelo a xy sono:

$$\begin{cases} R_x \\ R_y \\ M_z \end{cases} = M \cdot \begin{bmatrix} 1 & 0 & y_0 \\ 0 & 1 & -x_0 \\ y_0 & -x_0 & r_0^2 \end{bmatrix} \cdot \begin{bmatrix} \ddot{u}_x \\ \ddot{u}_y \\ \ddot{u}_{zz} \end{bmatrix},$$

dove R_x , R_y , M_z , \ddot{u}_x , \ddot{u}_y e \ddot{u}_{zz} sono le componenti dei vettori forza e accelerazione del nodo master, x_0 , y_0 sono le coordinate del baricentro della massa M dell'impalcato rispetto al nodo master e r_0 è il raggio d'inerzia polare rispetto al master. Si deduce quindi che, nel caso di presenza di impalcati rigidi (e solo in questo caso), è possibile riprodurre l'esatta relazione di equilibrio solo se $x_0=0$ e $y_0=0$, cioè solo posizionando il nodo master in corrispondenza del baricentro delle masse dell'impalcato rigido.

9) Nel caso di analisi dinamica di edifici multipiano ad impalcati rigidi sarà definito, per ogni impalcato, un nodo master nel baricentro delle masse dell'impalcato.

2.6 MODULO BEAM20 LINEARE

L'elemento è definito attraverso i due nodi di estremità I e J (Figura 2.1). Per l'input dei dati e per l'interpretazione dell'output dei risultati relativi all'elemento beam è necessario definire un sistema di coordinate locali x_e - y_e - z_e basato sui nodi. L'asse x_e è individuato dal vettore orientato dal nodo I al nodo J. L'asse y_e è individuato assegnando un terzo nodo K, giacente sul piano x_e - y_e in qualunque posizione (tranne che sull'asse x_e). L'asse y_e è la perpendicolare ad x_e passante per il nodo K. Infine, la terna locale è completata dall'asse z_e , perpendicolare al piano x_e - y_e .

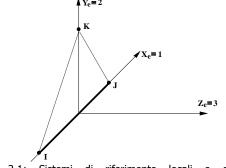


Figura 2.1: Sistemi di riferimento locali e orientamento dell'elemento

E' definito inoltre un sistema baricentrico, con l'asse 1 passante per i baricentri delle sezioni trasversali (l'elemento può avere sezione variabile lungo l'asse) e gli assi 2 e 3 sul piano della sezione, coincidenti quando possibile con gli assi principali d'inerzia. Inizialmente, e nel caso in cui non siano definite estremità rigide, i sistemi x_e - y_e - z_e e 1-2-3 sono coincidenti ($1=x_e$; $2=y_e$; $3=z_e$).

Nel caso più generale tuttavia l'elemento vero e proprio può essere spostato in posizione eccentrica rispetto agli assi x_e-y_e-z_e, con la definizione di due tratti rigidi di estremità. In altre parole, gli assi baricentrici 1-2-3 dell'elemento possono essere traslati e ruotati rispetto al sistema locale nodale x_e-y_e-z_e. I vettori DI=I'-I e DJ=J'-J rappresentano i due tratti infinitamente rigidi. Il tratto I'J' è la parte flessibile dell'asta (v. Figura 2.2). Questa è la parte dell'elemento di reale interesse, poiché solo essa può ricevere i carichi di elemento, componenti di accelerazione o condizione di suolo elastico e solo entro questo tratto è possibile avere l'output delle azioni di estremità e delle azioni interne. Sui nodi I e J di connessione possono comunque essere definiti i normali carichi nodali o eventuali spostamenti imposti o soppressi.

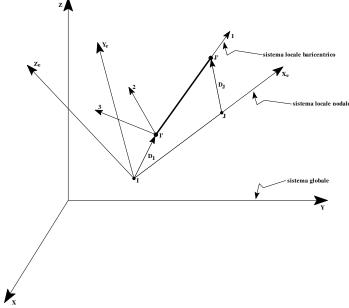


Figura 2.2: elemento beam con offset rigidi

Tutte le proprietà delle sezioni, i carichi e le caratteristiche della sollecitazione sono riferite agli assi locali dell'elemento.

I dati relativi alla sezione sono:

- Tipo sezione
- Area della sezione trasversale (A)
- Area deformabile a taglio lungo l'asse locale 2
- Area deformabile a taglio lungo l'asse locale 3
- Momento d'inerzia attorno all'asse locale 3 (I₃)
- Momento d'inerzia attorno all'asse locale 2 (I₂)
- Momento d'inerzia torsionale (J)

Per l'input dei dati delle sezioni dell'elemento beam è definito il sistema di coordinate locale baricentrico 1-2-3. L'asse locale 1 è l'asse baricentrico. Gli assi locali 2 e 3 giacciono su un piano perpendicolare all'asse 1 formando una terna ortogonale destra. Sono riferiti alla terna locale baricentrica: le proprietà geometriche, i carichi sull'elemento, le reazioni agli estremi e le azioni interne o le altre quantità calcolate nei punti interni NI dell'elemento (incognite del problema - v. Figura 2.3).

In Figura 2.4 sono rappresentate le sezioni di libreria. Il calcolo delle proprietà geometriche J, I_3 , I_2 è effettuato considerando gli assi locali 2 e 3 orientati come in Figura 2.3. Il programma può eseguire anche il calcolo con gli assi ruotati di 90 gradi (sono scambiati i momenti d'inerzia I_2 e I_3).

Si deve notare che utilizzando le sezioni di libreria, sono calcolate tutte le proprietà geometriche. Se la sezione reale differisce da quelle di libreria, o se l'operatore non desidera l'assegnazione di tutte le proprietà, deve introdurre l'area e i momenti d'inerzia considerando la sezione di tipo generica.

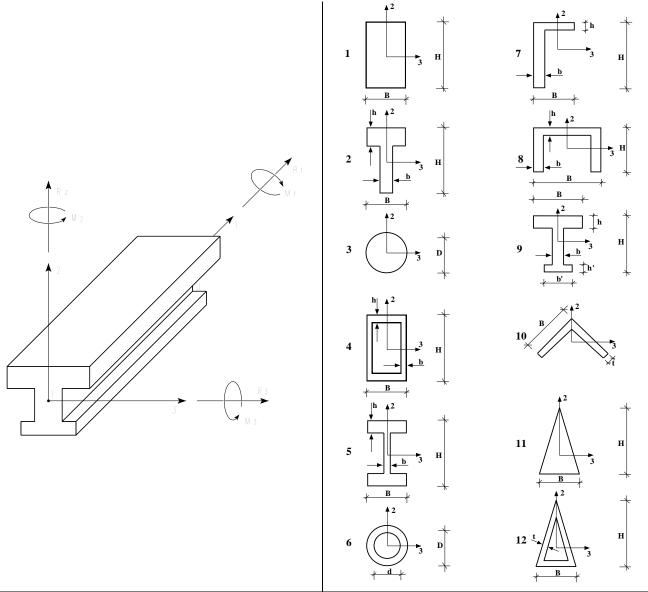


Figura 2.3: Orientamento della sezione, dei carichi di elemento e delle azioni interne

Figura 2.4:sezioni di libreria

Nel Microsap il suolo elastico può essere introdotto contemporaneamente in due direzioni locali ed è possibile assegnare su queste due direzioni, valori differenti del modulo elastico di fondazione. La trave su suolo elastico può inoltre essere caricata con qualunque tipo di carico ripartito o concentrato e composizione di carichi. La trave su suolo elastico si comporta come una trave comune per le direzioni lungo le quali non è definito un suolo elastico.

Il modulo elastico del terreno β_2 è definito come $\beta_2 = Kt_2 \cdot B^*$, essendo Kt_2 la costante elastica del terreno (dimensioni: [F][L]-3) e B^* la larghezza della suola di fondazione a contatto col terreno in direzione 2. Analogamente, il modulo in direzione 3 è $\beta_3 = Kt_3 \cdot H^*$, essendo H^* la larghezza della suola laterale di fondazione a contatto col terreno in direzione 3. Se $\beta_2 = 0$ non è applicato il suolo elastico alla Winkler in direzione 2. Analogamente per la direzione 3.

Il suolo elastico rappresenta un vincolo bilaterale a tutti gli effetti. Il terreno reagisce cioè sia per compressione che, eventualmente, per trazione. La trave su suolo elastico deve essere considerata esattamente come un'asta su un letto di molle vincolate al terreno. Un'unica asta (v. Figura 2.5), giacente lungo l'asse globale X e semplicemente appoggiata su suolo elastico definito lungo l'asse Z, non presenta moti rigidi lungo Z né rotazioni attorno a Y. Se la trave è caricata solo sul piano XZ, essa risulta sufficientemente

vincolata se è soppressa la traslazione lungo X sul nodo I, la traslazione lungo Y e le rotazioni attorno a X e Z sui nodi I e J.

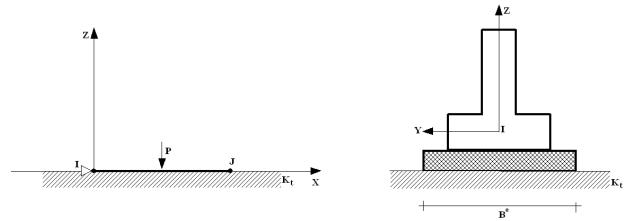


Figura 2.5:trave su suolo elastico

La definizione matematica di trave su suolo elastico comporta l'uso di espressioni con funzioni iperboliche ed esponenziali che per valori di lunghezza di trave maggiori di un certo limite conducono a risultati errati. Posto:

$$\alpha_i = \sqrt[4]{\frac{\beta_i}{4 \cdot E \cdot I_i}}$$

con α , β e I definiti per la direzione locale 2 o 3, gli errori di arrotondamento sono trascurabili se α ·L \leq 20. Nei casi pratici ciò accade raramente. Quando il suolo elastico ha rigidezza elevata rispetto a quella della trave, può rendersi necessaria la suddivisione in più elementi. Fortunatamente la perdita di precisione avviene bruscamente al superamento del limite suddetto. Per $20 < \alpha \cdot L < 25$ l'errore è gradualmente crescente e visibile. Per α ·L>25 i risultati sono inaccettabili, cioè la soluzione è manifestamente errata. Il programma esegue il controllo su $\alpha \cdot L$ nelle due direzioni in cui è applicato il suolo elastico e nel caso di superamento del limite α -L=20 è rappresentato un messaggio che fornisce il numero di elementi minimo in cui la trave deve essere

E' possibile definire le estremità rigide di un'asta attraverso i due vettori DI e DJ, spiccati dai nodi I e J verso le estremità del tratto flessibile I'J' dell'asta. L'elemento è definito dai due nodi estremi I e J a cui sono connessi due tratti infinitamente rigidi comunque orientati. Nel caso più generale il tratto flessibile dell'asta, che può essere più corto o più lungo della distanza tra i nodi I e J, subisce una rototraslazione. Il programma interviene modificando la matrice di rigidezza, la matrice di massa e il vettore dei carichi. Sia i carichi di elemento, sia la condizione di suolo elastico, sia tutti i risultati di elemento (azioni di estremità, azioni interne, spostamenti interni sono riferiti sempre al tratto flessibile e al sistema locale baricentrico 1-2-3 rototraslato sul tratto flessibile. Non è possibile introdurre alcun tipo di carico sulle estremità rigide.

Caso Generale. A seguito dell'applicazione delle estremità rigide DI e DJ il sistema locale baricentrico 1-2-3, inizialmente coincidente col sistema locale nodale x_e - y_e - z_e subisce una rototraslazione e la parte flessibile dell'asta subisce generalmente un accorciamento o un allungamento rispetto alla lunghezza iniziale L. Nella Figura 2.6 è mostrata la geometria degli offset rigidi e l'operazione di rototraslazione. Per convenienza sono definiti:

$$\Delta_1 = D_{1J} - D_{1I}$$

$$\Delta_2 = D_{2J} - D_{2I}$$

 $\Delta_3 = D_{3J} - D_{3I}$

ciò equivale a porre uguale a zero l'offset al nodo I e ad assegnare gli offset differenziali Δ_1 Δ_2 Δ_3 al nodo J. Le differenze Δ_1 , Δ_2 , Δ_3 tra le componenti di offset dovrebbero essere inferiori alla lunghezza dell'elemento.

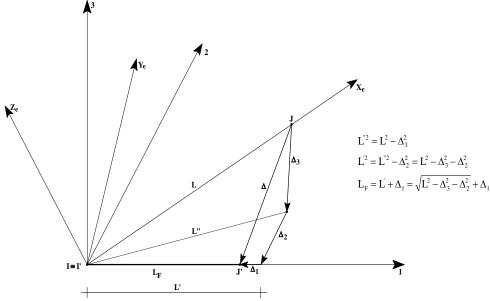
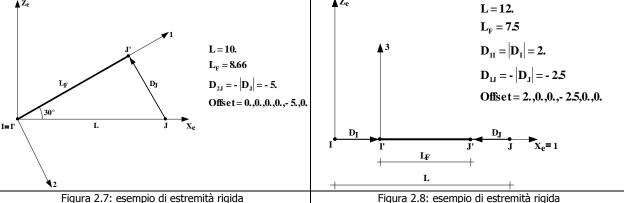


Figura 2.6: geometria degli offset rigidi di estremità

Casi Particolari

Spesso le estremità rigide sono utilizzate nel caso semplice di solo scostamento assiale, che produce un accorciamento del tratto flessibile dell'asta sia rispetto al nodo I che rispetto al nodo J. In tal caso il sistema locale 1-2-3 rimane parallelo al sistema x_e - y_e - z_e . La Figura 2.7 e Figura 2.8 mostrano due semplici esempi d'uso di estremità rigide.



rigara 2.71 esemplo ai esa emica rigida

Sulla linea d'asse dell'elemento beam possono agire contemporaneamente i sequenti carichi:

- Forze lineari applicati sia nel riferimento locale che globale;
- Forze concentrate applicati sia nel riferimento locale che globale;
- Momenti lineari agenti lungo l'asse baricentrico dell'asta;
- Momenti concentrati applicati sia nel riferimento locale che globale;
- Variazioni termiche uniformi applicate nel riferimento locale.

Il peso dell'asta (relativo alla accelerazione di 1g) viene calcolato in automatico dal programma. Esso è considerato ripartito sulla parte flessibile dell'asta ed è applicato lungo X,Y,Z mediante proiezione, secondo i fattori moltiplicativi dati. Il carico di gravità si aggiunge quindi automaticamente agli altri carichi eventualmente presenti sull'asta. Il programma effettua automaticamente la trasformazione del carico sul sistema locale 1-2-3.

Il salto termico Δt è maggiore di zero se produce un allungamento dell'asta. I gradienti termici δt_2 e δt_3 sono definiti come:

$$\delta t_2 = \frac{Ttop_2 - Tbot_2}{h} \quad \delta t_3 = \frac{Ttop_3 - Tbot_3}{b} \; .$$

 T_{top2} e T_{top3} sono le temperature dell'elemento sulle facce superiori lungo gli assi 2 e 3. T_{bot2} e T_{bot3} sono le temperature sulle facce inferiori sui semiassi negativi 2 e 3; h e b sono gli spessori medi (la trave può infatti essere a sezione variabile lungo l'asse) della sezione lungo gli assi 2 e 3. Gradienti termici δt_2 e δt_3 positivi producono su una trave appoggiata agli estremi una concavità rivolta verso il semiasse negativo 2 o 3 (v. Figura 2.9).

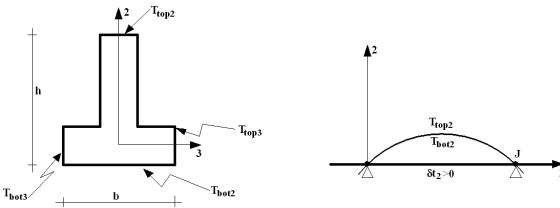


Figura 2.9:gradiente termico

I carichi concentrati sono introdotti specificando solo due parametri: il valore del carico e la sua posizione lungo l'asta (a). Il parametro a è il rapporto tra la distanza del carico dal primo estremo e la lunghezza dell'asta. Se a=0, il carico è sull'estremo sinistro; se a=1. è sull'estremo destro; Se a=0,5 è in mezzeria. Se il valore del carico è negativo esso è orientato in senso opposto all'asse locale cui si riferisce (Figura 2.10).

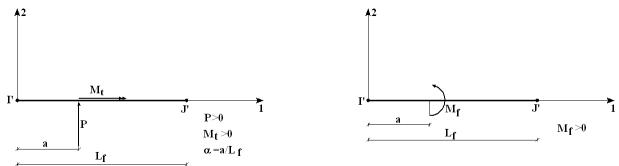


Figura 2.10:carichi concentrati

Per i carichi lineari è possibile indicare i valori iniziale (q_A, m_{tA}) e finale (q_B, m_{tB}) dei carichi ed i punti di inizio e fine carico $(\alpha_A e \alpha_B)$. Nel caso particolare in cui il carico sia esteso a tutta la lunghezza dell'asta, è necessario solamente definire i valori q_A e q_B e nel caso di carico uniformemente ripartito su tutta l'asta è sufficiente assegnare solo q_A . Tuttavia per assegnare un carico triangolare agente su tutta l'asta con valore nullo all'estremo destro è necessario assegnare a q_B un valore molto piccolo ma diverso da zero, oppure porre α_B =1 (Figura 2.11).

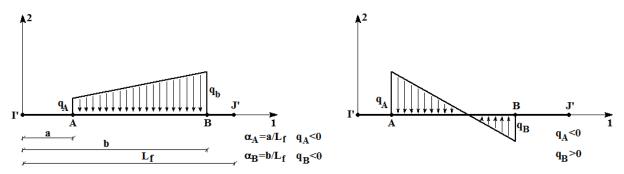


Figura 2.11:carichi ripartiti

Si noti che se l'asta è dotata di estremità rigide, tutti i tipi di carico sono sempre riferiti alla sola parte flessibile e le posizioni α , α_A , α_B sono relative all'estremità sinistra del tratto flessibile.

In output, per l'elemento beam sono fornite le caratteristiche di sollecitazione interna $(F_1, F_2, F_3, M_1, M_2, M_3)$. Oltre alle sollecitazioni sono anche calcolati i relativi spostamenti dei punti interni (traslazioni u_1 , u_2 , u_3 e

rotazioni α_1 , α_2 , α_3).

Per le travi di fondazione è calcolata anche la pressione p_t sul suolo elastico, definita come forza per unità di lunghezza. Da essa è possibile ricavare immediatamente la pressione sul terreno $\sigma_{t2} = p_{t2}/B^*$ o $\sigma_{t3} = p_{t3}/H^*$, essendo B^* e H^* le larghezze delle suole di fondazione in direzione 2 e 3.

2.7 MODULO BEAM22 NON LINEARE

L'elemento non lineare Beam22 è, come l'elemento lineare Beam20, un elemento composto. I componenti principali sono evidenziati nella Figura 2.12.

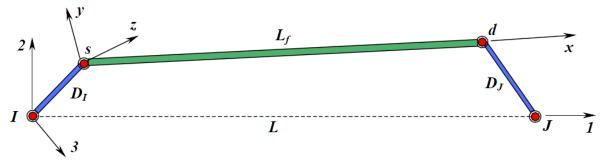


Figura 2.12:componenti dell'elemento Beam22

L'elemento è connesso alla struttura di cui fa parte attraverso i nodi I e J di estremità. La lunghezza totale dell'elemento L è semplicemente la distanza tra i nodi I e J e l'asse principale 1 dell'elemento è il vettore che va da I a J. L'elemento è inizialmente orientato sul sistema locale 1,2,3 in vari modi, ad esempio definendo un nodo K sul piano 1-2. Alle estremità dell'elemento possono quindi essere aggiunti uno o due tratti infinitamente rigidi (in blu), definiti attraverso i vettori D_I e D_I con direzione qualsiasi e verso dai nodi I_i agli estremi s,d del tratto flessibile centrale (in verde) di lunghezza L_f . Si viene quindi a definire un secondo sistema locale x,y,z, con origine sull'estremo sinistro s del tratto flessibile. E' in effetti rispetto a x,y,z che è ottenuta la matrice di rigidezza dell'elemento e il vettore forze. Attraverso opportune trasformazioni, essi sono quindi trasportati sul sistema 1,2,3 e successivamente al sistema globale X,Y,Z della struttura. Durante il passo di calcolo degli sforzi è necessario ripetere queste operazioni in senso inverso: ottenuti gli spostamenti nodali, questi sono convertiti al sistema 1,2,3 e infine al sistema x,y,z. In corrispondenza dei nodi I,J è possibile inoltre definire dei rilasci di una o più componenti di forza o momento (circolo in rosso). Questa ulteriore trasformazione è eseguita sul sistema 1,2,3 prima dell'assemblaggio dell'elemento sulla struttura. In guesto caso un rilascio comporta l'annullamento della forza che l'elemento altrimenti trasmetterebbe al nodo e il disaccoppiamento della componente di spostamento che altrimenti coinciderebbe con quella del nodo. La presenza di rilasci di estremità impone una netta distinzione tra quelli che sono i gradi di libertà delle estremità dell'elemento e i gradi di libertà posseduti invece dal nodo. Fin qui le caratteristiche dell'elemento Beam22 coincidono con quelle dell'elemento lineare Beam20.

L'elemento Beam22 è strutturato nello stesso modo dell'elemento Beam20; ad esso non può essere applicato il suolo elastico o elasto-plastico. Se la trave è su suolo elastico è necessario impiegare l'elemento elastico Beam20. Se si desidera invece applicare il suolo con caratteristiche elasto-plastiche, questo può essere simulato in modo concentrato applicando ai nodi dell'elemento Beam22 elementi Bound71. Le proprietà estese (centro di taglio, fattori di taglio) in Beam22 sono assegnate come proprietà delle sezioni. L'elemento può essere pensato come suddiviso in tre zone: le estremità, i connettori di estremità e il tratto flessibile centrale.

Le principali differenze con l'elemento Beam20 si riscontrano sul tratto flessibile. Nell'elemento Beam20 il tratto flessibile è rettilineo e costituito da un unico segmento di caratteristiche costanti per geometria e materiale. In particolare, il materiale è a comportamento lineare elastico e la sezione è di tipo prismatico con dimensioni costanti lungo l'asse x e composta di un unico materiale. Nell'elemento Beam22 la rigidezza del tratto flessibile è ottenuta attraverso l'integrazione numerica lungo l'asse x e quindi le sezioni possono avere caratteristiche variabili per geometria e materiale. Le proprietà di rigidezza di ciascuna sezione possono inoltre essere anch'esse ottenute attraverso l'integrazione sul piano yz della sezione trasversale, e ogni sezione può quindi essere costituita da diversi materiali a comportamento differente.

Nella Figura 2.13 è rappresentato il tratto flessibile dell'elemento, di lunghezza L_f.

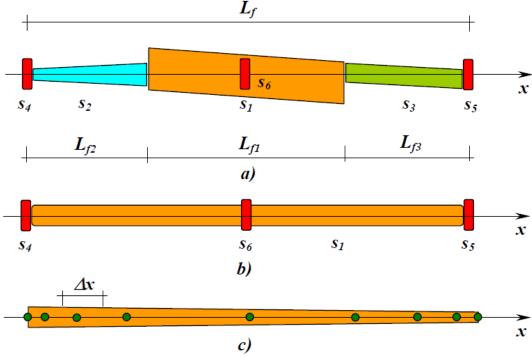


Figura 2.13:tratto flessibile dell'elemento Beam22

Nel caso più generale esso può essere composto da 6 segmenti: s_1,s_2,s_3,s_4,s_5,s_6 . Tutti i segmenti sono riferiti allo stesso sistema locale xyz. Uno o più segmenti possono mancare. Ciascun segmento è identificato generalmente dalle sue sezioni di estremità e dalla sua lunghezza. Esiste un caso particolare in cui il segmento possiede una sola sezione e non occupa spazio nel modello. Questo segmento particolare è identificato col nome di *Connettore*. Nell'elemento Beam22 i segmenti s_4 , s_5 e s_6 sono sempre dei connettori e le loro sezioni possono occupare qualunque posizione tra x=0 e $x=L_f$. Le proprietà dei connettori s_4 , s_5 e s_6 sono assegnate nelle linee F. Il tratto flessibile vero e proprio dell'asta è invece costituito dal segmento principale s_1 e dai segmenti laterali s_2 e s_3 . I segmenti s_2 e s_3 possono anch'essi degenerare a connettori elastoplastici e la loro sezione può essere ubicata in un punto qualunque.

La matrice di flessibilità del tratto flessibile si ottiene semplicemente sommando le matrici di flessibilità dei diversi segmenti. La matrice di flessibilità di un segmento si ottiene integrando le flessibilità della sezione lungo x. Data la generalità con cui possono essere definite le sezioni e il comportamento non lineare dei materiali, l'integrazione deve essere condotta per via numerica, attraverso il calcolo della flessibilità di sezioni ubicate in punti discreti x_i e con passo di integrazione finito Δx_i generalmente variabile. Il programma utilizza lo schema di integrazione di *Gauss-Lobatto*, che si dimostra particolarmente conveniente per questo tipo di applicazione. E' possibile definire fino a 20 punti di integrazione. Nella Figura 2.13 (figura c) è mostrato il caso con 9 punti di integrazione, in cui sono compresi sia gli estremi, sia la sezione di mezzeria. Le caratteristiche geometriche delle sezioni intermedie alle ascisse x_i (sezioni di controllo) sono ottenute interpolando quelle assegnate agli estremi.

La forma con cui sono disponibili i dati relativi alle caratteristiche del materiale e della sezione non permette il calcolo diretto della matrice di flessibilità della sezione. E' invece costruita la matrice di rigidezza della sezione, che è poi invertita. La rigidezza della sezione può essere ottenuta in modi differenti, a seconda del dettaglio con cui si vogliono condurre le analisi e dei dati di ingresso a disposizione. Tipicamente esistono tre possibilità.

- La sezione (o meglio, le sezioni di estremità) è scelta tra quelle di libreria. In questo caso le caratteristiche di inerzia sono calcolate dal programma, considerando variabili le dimensioni caratteristiche della sezione (ad esempio, larghezza e altezza per la sezione rettangolare) ma con l'ipotesi che essa sia costituita da materiale omogeneo e quindi anche a comportamento lineare.
- La sezione non è geometricamente definita, ma sono invece assegnate direttamente le sue proprietà globali di inerzia (area, momenti di inerzia) oppure i diagrammi, eventualmente non lineari delle azioni interne sull'intera sezione in funzione della corrispondente deformazione del piano della sezione. I diagrammi non lineari possono essere assegnati anche per una sola componente forza/deformazione, utilizzando per le altre componenti le proprietà di inerzia lineari.
- La sezione è discretizzata a fibre, cioè è suddivisa in un numero anche notevole di aree componenti

(fibre). A ciascuna fibra può essere assegnato un differente materiale con comportamento non lineare. La rigidezza della sezione è ottenuta per integrazione diretta degli sforzi su ciascuna fibra. Questo è il caso più generale, ma anche più oneroso per guanto riguarda i tempi di calcolo.

L'approccio utilizzato consente di schematizzare l'elemento e la struttura in vari modi. La scelta del tipo di modello dipende dalla precisione desiderata, dall'impegno che si intende porre nella preparazione dei dati di ingresso e dalle risorse di calcolo disponibili. Si riassumono di seguito le tipologie e le caratteristiche delle possibili schematizzazioni.

- Modello a fibre a plasticità diffusa. E' la schematizzazione più rigorosa ma anche la più onerosa per il tempo di calcolo richiesto. La definizione del comportamento dei materiali è piuttosto semplice in quanto sono richieste direttamente i diagrammi sforzo-deformazione dei materiali costituenti. La sezione deve però essere suddivisa in fibre (meshata nel suo piano). Se la sezione è omogenea (ad es. acciaio) questo compito potrebbe risultare particolarmente semplice. Buoni risultati si ottengono anche con suddivisioni piuttosto rade. Ovviamente il tempo di calcolo dipende dal numero di fibre per sezione e dal numero di sezioni (punti di integrazione) lungo l'elemento. Questo modello permette di riprodurre esattamente l'interazione tra le componenti di azione normale e momento biassiale.
- Modello a plasticità concentrata con cerniere elastoplastiche a fibre. Nell'analisi pushover il carico non lineare preponderante è rappresentato da forze nodali laterali. Di conseguenza si può ritenere approssimativamente che le zone plastiche si concentrino agli estremi dell'elemento. Tutto l'elemento può essere quindi schematizzato in modo lineare, definendo le sezioni in modo globale (prismatiche scelte tra quelle di libreria o generiche). A questo elemento sono infine aggiunti due connettori agli estremi, schematizzati a fibre. Il vantaggio rispetto al metodo precedente consiste nella riduzione del numero di sezioni a fibre da calcolare. Le sezioni a fibre di interfaccia mantengono la capacità di rappresentare fedelmente la presso-flessione.
- Modello a cerniere plastiche distribuite. Vi sono delle somiglianze con i due modelli precedenti. Questa è una schematizzazione a plasticità diffusa. Come nel primo modello, le sezioni sono integrate per l'intera lunghezza, ma sono definite con caratteristiche globali. In altre parole, sono assegnati i diagrammi momento-curvatura e azione normale-deformazione dell'intera sezione. Il calcolo è rapido, dovendo far riferimento ad intere sezioni e sono colte le variazioni dello stato elasto-plastico lungo tutto l'elemento. Il principale svantaggio consiste nel fatto che le azioni interne sono considerate tra loro indipendenti. Inoltre la assegnazione dei diagrammi non lineari presuppone il calcolo dei momenti plastici delle sezioni da effettuarsi all'esterno del solutore.
- Modello a cerniere plastiche concentrate. E' come il secondo modello, ma le sezioni a comportamento
 plastico sono definite con caratteristiche globali, come nello schema visto in precedenza. I diagrammi non
 lineari possono essere del tipo momento-curvatura o momento-rotazione. E' possibile definire il
 comportamento non lineare anche per le altre componenti. Indipendentemente dalla schematizzazione
 scelta per rappresentare il comportamento della parte principale dell'elemento è anche possibile inserire
 delle zone a comportamento elasto-plastico locale dovuto a dettagli costruttivi, come nelle connessioni
 semi-rigide delle membrature in acciaio.

Per quanto riguarda la definizione della caratteristiche non lineari del materiale CA si sono adottate le seguenti strategie:

- per l'acciaio sono richiesti il valore della sigma di snervamento σy e il valore del modulo tangente E_t del tratto post-snervamento e ciò per definire un diagramma del tipo Curva bilineare simmetrica uniassiale deformazioni-sforzi ($\epsilon \sigma$).
- per il CA è implementata una Curva analitica uniassiale deformazioni-sforzi (ϵ - σ), come visibile in Figura 2.14.

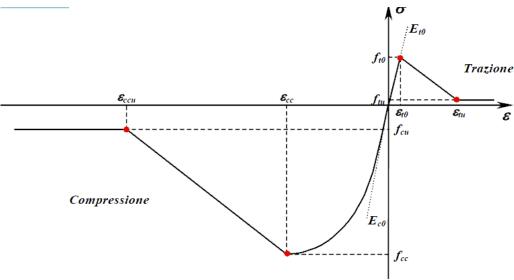


Figura 2.14:curva analitica uniassiale deformazioni-sforzi (ε-σ) per il c.a.

- Tramite i seguenti parametri si può intervenire sulla forma dei vari tratti della curva:
 - $p_1=E_{CO}(0,0)$ modulo elastico iniziale a compressione;
 - p₂=f_{CC} resistenza a compressione;
 - $p_3=\epsilon_{CC}$ (0,002) deformazione di rottura (in corrispondenza di f_{CC});
 - $p_4=f_{CU}/f_{CC}$ (0,0) resistenza ultima residua (in rapporto a f_{CC});
 - $_{\circ}$ p₅=ε_{CCU}/ε_{CC} (1,75) deformazione ultima (in rapporto a ε_{CC});
 - $_{\circ}$ p₆=ε_{CCO}/ε_{CC} (∞) deformazione a rottura (in rapporto a ε_{CC});
 - p₇=E_{t0} (E) modulo elastico iniziale a trazione;
 - $p_8=f_{t0}$ (0,0) resistenza a trazione ($\epsilon_{t0}=f_{t0}/E_{t0}$);
 - $p_9 = f_{tu}/f_{t0}$ (0,0) resistenza ultima residua (in rapporto a f_{t0});
 - $_{\circ}$ p₁₀=ε_{tu}/ε_{t0} (10,0) deformazione ultima (in rapporto a ε_{t0}).

2.8 MODULO SHELL LINEARE

Shell60 è un elemento shell ad alte prestazioni composto da una parte membranale e da una flessionale i cui effetti possono essere accoppiati tra loro per contemplare i casi di piastre in composito a grosso spessore con i diversi strati comunque orientati. L'elemento membranale è dotato di una vera rigidezza alla rotazione normale (grado di libertà drilling), che consente una più fedele schematizzazione di strutture a guscio non completamente giacenti su un piano e una naturale connessione con elementi beam. Gli elementi implementati sono triangolari o quadrangolari, a tre e quattro nodi rispettivamente. Gli elementi quadrangolari sono ottenuti assemblando in modo automatico più elementi triangolari. Gli elementi triangolari sono di tipo HPE (High Performance Elements) ad alte prestazioni. Hanno una formulazione particolare che li rende paragonabili ai più classici elementi isoparametrici a 6 nodi con deformazione lineare. Contrariamente all'elemento quadrangolare, l'elemento triangolare può essere utilizzato efficacemente per schematizzare l'intera struttura a guscio sebbene la forma composta quadrangolare sia comunque generalmente superiore. L'utilizzo di soli elementi triangolari ha però indubbi vantaggi. L'elemento triangolare consente una più rapida esecuzione, che permette l'uso di suddivisioni più fitte. La suddivisione di qualunque superficie risulta inoltre più semplice ed accurata. L'elemento Shell60 possiede una formulazione che lo rende piuttosto insensibile alla distorsione. Questa caratteristica è particolarmente utile nell'impiego con pre-processor che generano la mesh in modo automatico. In ogni caso, la risposta dell'elemento è tanto più accurata quanto più la sua forma è prossima al triangolo equilatero. L'elemento è definito su un sistema locale xyz, con asse z perpendicolare al suo piano. Ad esso occorre far riferimento per il corretto orientamento dei materiali ortotropi, della geometria della sezione e dei carichi di elemento. Inoltre i risultati sono anch'essi riferiti al sistema locale. I sistemi locali non sono legati all'orientamento e numerazione dei lati dell'elemento ma possono essere assegnati esplicitamente come caratteristica della sezione. I tempi di calcolo degli elementi sono contenuti, grazie al fatto che le matrici di rigidezza sono esplicitamente integrate.

L'elemento quadrangolare è definito assegnando la sequenza dei nodi I, J, K, L (v. Figura 2.15).

L'orientamento dell'asse locale z è determinata dal verso di percorrenza antiorario dei nodi. L'asse locale x è invece assegnato esplicitamente come caratteristica geometrica (v. linee C). L'elemento triangolare è numerato assegnando il nodo L uguale al nodo K (I, J, K, K) oppure lasciando L=0. L'elemento quadrangolare è ottenuto per sovrapposizione di quattro triangoli.

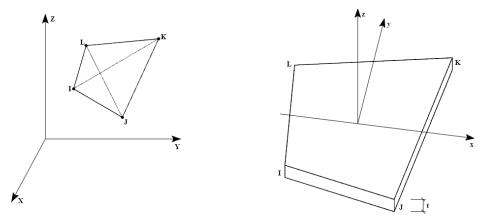


Figura 2.15:definizione modulo shell lineare

La formulazione dell'elemento HPE (*High Performance Element*) Shell60 è basata sulla composizione di un elemento triangolare membranale AnDeS con grado di libertà drilling e sull'elemento DKT (Discrete Kirchhoff Triangle). Il grado di libertà di rotazione (*drilling dof*) è aggiunto descrivendo attraverso di esso la deformazione di ciascun lato. Molti programmi utilizzano la formulazione *Allman Rotation*, ma il comportamento degrada, con aumento di rigidezza all'aumentare della distorsione (*locking*). Gli elementi HPE nella formulazione AnDeS non transitano neppure attraverso le funzioni di forma degli spostamenti nodali ma piuttosto attraverso la definizione della deformazione del centroide e della variazione che questa subisce nel passaggio ai nodi (*deviatoric strain*). La stessa matrice di rigidezza è la somma di una matrice base (*basic stiffness*) e di una matrice di ordine superiore (*high-order stiffness*). Per maggiori informazioni si veda il Report seguente: *CU-CAS-03-02 - C.A. Felippa – A Study of Optimal Membrane Triangles with Drilling Freedom – Colorado University, Center for Aerospace Structures – February 2003.*

Per default, tutti gli elementi del gruppo sono costruiti sovrapponendo l'elemento membranale (KTYPM=0) e l'elemento flessionale nella formulazione thin shell (KTYPB=0). Tuttavia, assegnando KTYPM=-1 oppure KTYPB=-1 esiste la possibilità di disattivare una delle due componenti. Non è possibile disattivarle entrambe. La parte flessionale dell'elemento Shell60 è anch'essa ottenuta con l'approccio AnDeS, ed utilizza per default il noto DKT (*Discrete Kirchhoff Triangle*). Se KTYPB è posto uguale a zero il taglio fuori piano è trascurato. Altrimenti, se KTYPB è posto uguale a 1, è utilizzato l'elemento DKMT (*Discrete Kirchhoff-Mindlin Triangle*), formulato secondo la teoria di Reissner-Mindlin. Gli elementi quadrilateri sono identificati con la sigla DKQ e DKMO.

Se i campi n.3,4,5 sono nulli il programma assume comunque per essi il valore minimo uguale a 1 per default. Entro il gruppo elementi deve essere assegnato almeno un materiale definito per almeno un valore di temperatura (deve sempre essere assegnata almeno una serie di linee B). Deve inoltre essere definita almeno una sezione (deve essere assegnata almeno una linea C). I materiali e le sezioni possono essere assegnati in qualunque numero, indipendentemente da quelli effettivamente utilizzati dagli elementi del gruppo.

Gli elementi del gruppo possono essere basati su fondazione elastica. In questo caso è necessario inserire le linee D che ne definiscono le proprietà. Se il campo n.6 è nullo le linee D non devono essere incluse. I set di fondazione elastica possono essere assegnati in qualunque numero, indipendentemente da quelli effettivamente utilizzati dagli elementi del gruppo.

Gli elementi del gruppo possono ricevere carichi interni di vario tipo. In questo caso è necessario inserire le linee E, che ne definiscono le proprietà e le linee F che li assegnano agli elementi. Se il campo n.7 è nullo le linee E ed F non devono essere incluse. I set di carico possono essere assegnati in qualunque numero, indipendentemente da quelli effettivamente utilizzati dagli elementi del gruppo.

L'elemento Shell60 è considerato a grosso spessore. Il programma compone infatti la matrice di rigidezza con le submatrici principali membranale e flessionale e la submatrice di accoppiamento. L'elemento è inoltre sempre considerato generalmente stratificato, anche quando la sua sezione è omogenea. Anche nell'analisi lineare, la presenza di materiali diversi provoca accoppiamento tra le azioni su piano e fuori piano. Forze agenti sul piano dell'elemento possono quindi generare inflessioni fuori piano e viceversa. Se inoltre il materiale ha comportamento non lineare questi effetti esistono anche se la sezione è inizialmente omogenea.

Gli elementi sono sempre considerati stratificati. Con le linee C che seguiranno è possibile definire vari tipi di sezione. Se il comportamento è lineare e la sezione è omogenea è sufficiente definire un solo strato.

I risultati di sforzo, deformazione e stato del materiale sono sempre calcolati in corrispondenza dei punti di integrazione, ubicati sul punto medio di ciascun lato dei triangoli componenti. Inoltre su ognuna di queste posizioni è necessario eseguire l'integrazione su più punti nello spessore. I punti di integrazione nello spessore di ciascuno strato sono sempre due, ubicati sulla faccia inferiore e superiore. In output è possibile richiedere tutti i risultati entro lo spessore o una parte di essi. Per quanto riguarda l'ubicazione sulla superficie, essi possono essere letti direttamente in corrispondenza delle mezzerie di ciascun lato dell'elemento o viceversa essere estrapolati ai nodi, e sono quindi sempre in numero di 4. Per il triangolo semplice la posizione 4 coincide con la posizione 3 (mezzeria del terzo lato oppure posizione del terzo nodo). Per il quadrilatero i punti di integrazione sono tre per ciascun triangolo componente e il risultato sui 4 punti di mezzeria dei lati è ottenuto eseguendo la media dei valori calcolati sulla stessa posizione.

E' possibile definire un massimo di 98 strati nello spessore. Per ogni strato è necessario conservare lo stato di sforzo e deformazione durante un calcolo. I tempi di calcolo e la quantità di spazio su disco e in memoria dipendono in misura rilevante dal numero di strati.

2.9 MODULO SHELL NON LINEARE

L'elemento Shell62 è più propriamente una libreria di diversi elementi shell non lineari ad alte prestazioni di tipo membranale e flessionale i cui effetti possono essere soppressi, disaccoppiati o accoppiati tra loro per contemplare i casi di piastre in composito a grosso spessore con i diversi strati comunque orientati. L'elemento shell può essere ottenuto combinando in modo differente un elemento di tipo membranale con uno di tipo flessionale. Come casi particolari, la componente flessionale o membranale può essere soppressa. Se le componenti membranale e flessionale sono entrambe attivate, esse sono anche sempre accoppiate tra loro. L'elemento membranale è dotato di una vera rigidezza alla rotazione normale (grado di libertà drilling), che consente una più fedele schematizzazione di strutture a quscio non completamente giacenti su un piano e una naturale connessione con elementi beam. Gli elementi implementati nell'attuale release sono triangolari o quadrangolari, a tre e quattro nodi rispettivamente. Gli elementi quadrangolari sono ottenuti assemblando in modo automatico più elementi triangolari. Gli elementi triangolari sono di tipo HPE (High Performance Elements) ad alte prestazioni. Hanno una formulazione particolare che li rende paragonabili ai più classici elementi isoparametrici a 6 nodi con deformazione lineare. Contrariamente all'elemento quadrangolare, l'elemento triangolare può essere utilizzato efficacemente per schematizzare l'intera struttura a guscio, sebbene la forma composta quadrangolare sia comunque generalmente superiore. L'utilizzo di soli elementi triangolari ha però indubbi vantaggi. L'elemento triangolare consente una più rapida esecuzione, che permette l'uso di suddivisioni più fitte. La suddivisione di qualunque superficie risulta inoltre più semplice ed accurata. La libreria di elementi Shell62 possiede inoltre delle famiglie di elementi piuttosto insensibili alla distorsione. Questa caratteristica li rende particolarmente idonei all'impiego con pre-processor che generano la mesh in modo automatico. In ogni caso, la risposta dell'elemento è tanto più accurata quanto più la sua forma è prossima al triangolo equilatero. L'elemento è definito su un sistema locale xyz, con asse z perpendicolare al suo piano. Ad esso occorre far riferimento per il corretto orientamento dei materiali ortotropi, della geometria della sezione e dei carichi di elemento. Inoltre i risultati sono anch'essi riferiti al sistema locale. I sistemi locali non sono legati all'orientamento e numerazione dei lati dell'elemento ma possono essere assegnati esplicitamente come caratteristica della sezione. I tempi di calcolo degli elementi sono limitati, grazie al fatto che le matrici di rigidezza sono esplicitamente integrate.

Il gruppo Shell62 può comprendere elementi triangolari e quadrangolari. L'elemento quadrangolare è definito assegnando la sequenza dei nodi I, J, K, L (v. Figura 2.15). L'orientamento dell'asse locale z è determinata dal verso di percorrenza antiorario dei nodi. L'asse locale x è invece assegnato esplicitamente come caratteristica geometrica (v. linee C). L'elemento triangolare è numerato assegnando il nodo L uguale al nodo K (I, J, K, K) oppure lasciando L=0. Tra la libreria Shell62 non esiste attualmente un elemento quadrangolare puro, ma esso è ottenuto assemblando in vario modo più elementi triangolari. Sono disponibili le seguenti opzioni:

- KCOMP=0. (Default). L'elemento è quadrangolare puro (non ancora disponibile è attivato il caso KCOMP=4). Da preferire.
- KCOMP=1. L'elemento è composto da due triangoli affiancati sulla diagonale I-K.
- KCOMP=2. L'elemento è composto da due triangoli affiancati sulla diagonale J-L.
- KCOMP=3. L'elemento è composto da due triangoli affiancati sulla diagonale minore.
- KCOMP=4. L'elemento è la sovrapposizione di quattro triangoli ottenuti come nei casi KCOMP=1 e KCOMP=2. La costruzione dell'elemento comporta circa il doppio del tempo, ma i risultati sono più accurati, poiché gli altri tipi di composizione risentono leggermente del differente orientamento dei

triangoli.

Ai campi n.8, e n.9 ITYPM e ITYPB indicano rispettivamente il tipo di elemento membranale e flessionale da utilizzare. La libreria Shell62 utilizza una particolare definizione parametrica per gli elementi sia membranali che flessionali, per cui è teoricamente possibile la creazione di infiniti diversi tipi di entrambi e di infinite combinazioni. I parametri sono in numero di 11 per il membranale e di 37 per il flessionale e costituiscono una sorta di DNA dell'elemento. In generale l'attribuzione casuale dei parametri produce elementi con caratteristiche indesiderabili. Per ottenere elementi ad alte prestazioni è necessario imporre il rispetto di condizioni particolari tra i parametri. La "scoperta" di un nuovo elemento è quindi un processo oneroso che esula assolutamente dagli scopi richiesti dall'utente comune, seppur esperto. Questa è la ragione per cui, nella presente release, non è contemplata la assegnazione diretta dei parametri. Particolari relazioni tra i parametri danno origine a famiglie differenti di elementi, dotati di specifiche proprietà. Ad esempio, alcune famiglie sono particolarmente insensibili alla distorsione, altre permettono di ottenere elementi che al tendere a zero dello spessore tendono alla soluzione dell'elemento beam (morphing). ITYPM e ITYPB permettono di riprodurre diversi elementi appartenenti a queste famiglie e già noti e "scoperti" da vari autori e utilizzati in vari programmi ad elementi finiti. Alcuni di essi hanno caratteristiche particolarmente notevoli e sono di solito identificati come High Performance Membrane Elements e High Performance Plate Bending Elements, altri hanno ormai solo un interesse "storico" e sono poco utilizzati. Assegnando ITYPM=0 e ITYPB=0 sono attivati quei tipi di elementi High-Performance che, dai test effettuati, sembrano possedere le migliori proprietà generali. Non è detto però che essi siano i migliori in assoluto per ogni applicazione. Ad esempio, se il preprocessor che genera la mesh produce sempre elementi regolari, magari di forma rettangolare, può essere più conveniente l'utilizzo di un determinato tipo o viceversa, un tipo di elemento non perfetto nella forma rettangolare può essere insensibile però alla distorsione. Entro ogni tipo di elemento di libreria e per entrambe le forme membranale e flessionale è inoltre concessa all'utente la variazione di uno dei parametri che sovrintende alla generazione della matrice di rigidezza. Una volta scelto l'elemento ottimale per una determinata applicazione, è possibile quindi calibrare e tarare (di solito in intervalli molto stretti e con estrema cautela) il livello di precisione dei risultati (v. campi 12-15). Il programma consente di escludere totalmente la componente membranale o flessionale. Si tenga presente che la parte membranale dell'elemento reagisce alle componenti di forza/momento sul piano e trasmette le sole componenti di spostamento locale U_x , U_y , θ_z mentre la parte flessionale reagisce alle componenti di forza/momento fuori piano e trasmette le sole componenti di spostamento U_z , θ_x , θ_y . E' possibile combinare in qualunque modo i tipi di elemento membranale e flessionale scelti tra quelli disponibili.

Gli elementi di tipo membranale attivabili attraverso il campo n.8 sono listati nella tabella seguente. La prima colonna i colori rosso (Ottimo), arancione (Medio) e giallo (Mediocre) forniscono una classifica delle prestazioni. Si noti che assegnando ITYPM=-1 l'elemento shell finale coincide con un elemento esclusivamente flessionale. Tutti i tipi di elemento, tranne il n.2 e il n.10, trasmettono la rotazione θ_z . Il tipo n.2 e n.10 è il triangolo a sforzo e deformazione costante già implementato nel modulo SHELL delle release precedenti alla 9.3. I tipi 1,3,4 possono tutti classificarsi come HPE (High Performance Elements) e sono ottenuti con differenti formulazioni di cui la AnDeS è quella più sofisticata e recente. Il grado di libertà di rotazione (drilling dof) è aggiunto descrivendo attraverso di esso, con differenti modalità, la deformazione di ciascun lato. Ad esempio, inserendo un nodo intermedio i cui gradi di libertà sono condensati e giungendo ad una matrice di trasformazione che permette il passaggio dall'elemento a 6 nodi a quello a 3 nodi (retrofitting). Oppure con opportune funzioni di forma quadratiche comprendenti le rotazioni, come nella formulazione di Allman (tipi 5,6,7). Molti programmi utilizzano la formulazione Allman Rotation, ma il comportamento degrada, con aumento di rigidezza all'aumentare della distorsione (locking). Questo difetto può essere mitigato agendo sul tipo di integrazione numerica. I tipi 5,6,7 differiscono infatti per lo schema di integrazione di volume adottato nel calcolo della matrice di rigidezza. Infine, gli elementi HPE nella formulazione AnDeS non transitano neppure attraverso le funzioni di forma degli spostamenti nodali ma piuttosto attraverso la definizione della deformazione del centroide e della variazione che questa subisce nel passaggio ai nodi (deviatoric strain). La stessa matrice di rigidezza è la somma di una matrice base (basic stiffness) e di una matrice di ordine superiore (high-order stiffness). Tutti i tipi di elementi membranali della lista sono in effetti ottenuti dall'ANDES template, assegnando opportune sequenze ai parametri. Tuttavia il n.1 è quello costruito per fornire risposte ottimali ai patch test che verificano le proprietà di riprodurre la flessione pura, la insensibilità alla distorsione, ecc. Per maggiori informazioni si veda il Report seguente: CU-CAS-03-02 - C.A. Felippa - A Study of Optimal Membrane Triangles with Drilling Freedom - Colorado University, Center for Aerospace Structures - February *2003*.

Sigla	ITYPM	β_{o}	Descrizione
-	-1	-	L'elemento non possiede la componente membranale

F			-
Default	0	(1/2)	Default – E' applicato il tipo 1
Opt	1	(1/2)	Ottimizzato ANDES – Esplicito
CST	2	-	Constant Strain – Costruzione Esplicito
EFF	3	4/9	Extended Free Formulation - Esplicito
FF	4	4/9	Free Formulation - Esplicito
ALL-3I	5	4/9	Allman Rotation – Interior 3-Point Rule - Template
ALL-3M	6	4/9	Allman Rotation – 3-MidPoint Rule - Template
ALL-LS	7	4/9	Allman Rotation – Linear Strain Fitting - Template
LST-Ret	8	1/2	LST-6/12C Retrofitting - Template
Opt	9	(1/2)	Come tipo 1, ma con il Template
CST	10	-	Come tipo 2, ma con il Template

Gli elementi di tipo flessionale attivabili attraverso il campo n.9 sono listati nella tabella sequente. Si noti che assegnando ITYPB=-1 l'elemento shell finale coincide con un elemento esclusivamente membranale. Gli elementi 0-21 sono ottenuti dallo stesso template, che utilizza l'approccio AnDeS, assegnando opportune sequenze ai 37 parametri. Sono inclusi una gran varietà di elementi presenti in letteratura e largamente usati in diversi programmi FEM, tra cui il noto DKT (Discrete Kirchhoff Triangle), utilizzato per default. Al contrario di quanto avviene per l'elemento membranale dove la scelta ricade senza alcun dubbio sull'elemento OPT, per l'elemento flessionale la scelta ottimale è più sfumata e dipende anche dal tipo di applicazione. Ovviamente, utilizzando mesh sempre più fitte e regolari, tutti gli elementi convergono al risultato esatto. In prima colonna i colori rosso (Ottimo), arancione (Medio) e giallo (Mediocre) forniscono una classifica delle prestazioni, per spessori compresi tra 1/10 e 1/20 della dimensione tipica L della piastra. Tutti i tipi, fino al n.21 sono comunque elementi di thin-shell, a piccolo spessore, in cui è trascurata la deformazione a taglio. Rimanendo nell'ambito della teoria thin-shell, quando lo spessore è piuttosto elevato, l'elemento DKT è quello che sembra fornire le migliori prestazioni. Quando gli spessori sono più piccoli (<1/20 L) le prestazioni possono essere diverse da quelle evidenziate. In tal caso, essendo rispettata a pieno la teoria thin-shell, gli elementi 12-21 possono essere classificati come HPE (High Performance Elements). Gli elementi n.20, n.21 e n.4 sembrano fornire i migliori risultati in generale, per mesh comunque distorte, e tipo di carico e vincolo generici. Tuttavia, almeno su test con elementi regolari, il n.19 è risultato quello che più fedelmente riproduce il risultato "medio" dell'elemento beam equivalente. Non bisogna fare l'errore di voler riprodurre a tutti i costi con un elemento piano il risultato di una beam a due nodi. Si ricordi che nel primo caso i vincoli e i carichi sono introdotti attraverso i nodi d'angolo. Nella beam i carichi e i vincoli sono ricondotti ai nodi che rappresentano macroscopicamente un'intera sezione. L'elemento n.19 è costruito con parametri rigorosamente calcolati per ottenere un determinato scopo in modo ottimale (il morphing verso la beam). I test eseguiti indicano inoltre altri elementi particolarmente interessanti, non necessariamente HPE, come i tipi n.1,3,4,12,13,15,16,17,18. Per maggiori informazioni si veda il Report seguente: CU-CAS-00-14 - C.A. Felippa - Recent Advances in Finite Element Templates - Colorado University, Center for Aerospace Structures - June 2000.

Sigla	ITYPB	α	Descrizione e Proprietà			
-	-1	-	L'elemento non possiede la componente flessionale			
Default	Default 0 1		Default – E' applicato il tipo 8			
ALR	1	0	KPT – Assumed Linear Rotation – Militello, Felippa - ARI			
AQR0	2	0	KPT – Assumed Quadratic Rotation – Mil.,Fel ARIENO			
AQRBE	3	1/√2	KPT – Variante del Tipo 2 – ARIENO+BE			
AQR1	4	1	KPT – Variante del Tipo 2 - ARIENO			
AVG	5	0	KPT – Average Curvature – Militello, Felippa- ENO			
BCIZ0	6	0	Bazeley-Cheung-Irons, Zienkiewicz – BCIZ bonificato			
BCIZ1	7	1	Variante del Tipo 6 – No ARI, No ENO			
DKT	8	1	Discrete Kirchhoff Triangle – Batoz - ARIENO			
FF0	9	0	Free Formulation – Bergan, Felippa - ENO			
FF1	10	1	Variante del Tipo 9 - ENO			
HCT	11	1	Hsieh-Clough-Tocher – No ARI, No ENO			
BTE13	12	1/3	Nuovo – Famiglia BTE – Felippa - ARIENO+BTE			
DBE00	13	0	Nuovo – Famiglia DBE – Felippa - ARIENO+DBE			
DBE13	14	1/3	Nuovo - Variante del Tipo 13 – ARIENO+DBE			
DBE12	15	1/2	Nuovo - Variante del Tipo 13 – ARIENO+DBE			
DBEN00	16	0	Nuovo – Famiglia DBEN – Felippa - ARI+DBE, No ENO			
DBEN13	17	1/3	Nuovo – Variante Tipo 16 – ARI+DBE, No ENO			
DBEN12	18	1/2	Nuovo – Variante Tipo 16 – ARI+DBE, No ENO			
DBTE13	19	1/3	Nuovo – Famiglia DBTE – Felippa – ARIENO+DBTE			
HCTS	20	1	Nuovo – Derivato da Tipo 11 – Felippa – ARI, No ENO			
MDIT1	21	1	Nuovo – Famiglia MDI – Felippa – ARIENO+MDI			
DKMT	22	-	Variante a medio spessore del Tipo 8, con taglio fuori piano			

L'elemento DKMT n.22 (Discrete Kirchhoff-Mindlin Triangle) non fa parte del template, ma è invece formulato in modo esplicito attraverso la modifica dell'elemento DKT secondo la teoria di Reissner-Mindlin. E' adatto per piastre moderatamente spesse e include la deformazione per taglio fuori piano. Sebbene esso sia costruito in modo da adattare automaticamente la propria rigidezza ai casi di piccolo spessore, è tuttavia consigliabile l'uso degli elementi specifici *thin-shell* per lastre sottili. La deformazione a taglio fuori piano dell'elemento DKMT è sempre lineare.

Se i campi n.3,4,5 sono nulli il programma assume comunque per essi il valore minimo uguale a 1 per default. Entro il gruppo elementi deve essere assegnato almeno un materiale definito per almeno un valore di temperatura (deve sempre essere assegnata almeno una serie di linee B). Deve inoltre essere definita almeno una sezione (deve essere assegnata almeno una linea C). I materiali e le sezioni possono essere assegnati in qualunque numero, indipendentemente da quelli effettivamente utilizzati dagli elementi del gruppo.

Gli elementi del gruppo possono essere basati su fondazione elastica. In questo caso è necessario inserire le linee D che ne definiscono le proprietà. Se il campo n.6 è nullo le linee D non devono essere incluse. I set di fondazione elastica possono essere assegnati in qualunque numero, indipendentemente da quelli effettivamente utilizzati dagli elementi del gruppo.

Gli elementi del gruppo possono ricevere carichi interni di vario tipo. In questo caso è necessario inserire le linee E, che ne definiscono le proprietà e le linee F che li assegnano agli elementi. Se il campo n.7 è nullo le linee E ed F non devono essere incluse. I set di carico possono essere assegnati in qualunque numero, indipendentemente da quelli effettivamente utilizzati dagli elementi del gruppo.

Se sono contemporaneamente attivate le componenti membranale e flessionale, il programma genera sempre la submatrice di rigidezza di accoppiamento. L'elemento è sempre considerato generalmente stratificato, anche quando la sua sezione è omogenea. Anche nell'analisi lineare, la presenza di materiali diversi provoca accoppiamento tra le azioni su piano e fuori piano. Forze agenti sul piano dell'elemento possono quindi generare inflessioni fuori piano e viceversa. Se inoltre il materiale ha comportamento non lineare questi effetti esistono anche se la sezione è inizialmente omogenea.

Gli elementi sono sempre considerati stratificati. Con le linee C che seguiranno è possibile definire vari tipi di sezione. La sezione di default è omogenea, costituita cioè da un unico materiale, ma anch'essa deve essere suddivisa in diversi strati per tener conto del loro differente comportamento quando il materiale entra in campo non lineare. Se il comportamento è lineare e la sezione è omogenea è necessario definire un solo strato per il calcolo preciso delle caratteristiche del materiale. In caso contrario, poiché la variazione di sforzo entro lo strato è lineare, non sarà possibile simulare una risposta non lineare. Maggiore è il numero di strati e maggiore sarà l'accuratezza del risultato. Se la sezione è costituita da molti strati a piccolo spessore è sufficiente l'approssimazione lineare entro lo spessore dello strato. In caso contrario, se lo spessore dello strato è rilevante, sarà necessario suddividerlo in più strati.

Nell'analisi non lineare i risultati intermedi di sforzo, deformazione e stato del materiale sono sempre calcolati, ad ogni iterazione, in corrispondenza dei punti di integrazione, ubicati sul punto medio di ciascun lato dei triangoli componenti. Inoltre su ognuna di queste posizioni è necessario eseguire l'integrazione su più punti nello spessore. I punti di integrazione nello spessore di ciascuno strato sono sempre due, ubicati sulla faccia inferiore e superiore. In output, per le soluzioni convergenti, è possibile richiedere tutti i risultati entro lo spessore o una parte di essi. Per quanto riguarda l'ubicazione sulla superficie, essi possono essere letti direttamente in corrispondenza delle mezzerie di ciascun lato dell'elemento o viceversa essere estrapolati ai nodi, e sono quindi sempre in numero di 4. Per il triangolo semplice la posizione 4 coincide con la posizione 3 (mezzeria del terzo lato oppure posizione del terzo nodo). Per il quadrilatero i punti di integrazione sono tre per ciascun triangolo componente e il risultato sui 4 punti di mezzeria dei lati è ottenuto eseguendo la media dei valori calcolati sulla stessa posizione.

E' possibile definire un massimo di 98 strati nello spessore. Per ogni strato è necessario conservare lo stato di sforzo e deformazione durante un calcolo non lineare. I tempi di calcolo e la quantità di spazio su disco e in memoria dipendono in misura rilevante dal numero di strati impiegati.

BET0 consente di modificare uno dei parametri del tipo elemento membranale prescelto ed in particolare il coefficiente β_0 legato alla componente high-order (K_h) della matrice di rigidezza nella formulazione AnDeS. La matrice K è infatti ottenuta come $K=K_b(\alpha)+K_h(\beta_i)$, in cui α e β_i (i=0,9) sono gli 11 parametri del template, dipendenti dal tipo di elemento prescelto e pre-cablati all'interno del programma. B_0 è comunque un parametro particolare, essendo un semplice moltiplicatore di K_h , e quindi la relazione precedente è in effetti $K=K_b(\alpha)+\beta_0xK_h(\beta_i)$ con (i=1,9). Il valore tipico è $\beta_0=4/9$ oppure $\beta_0=1/2$, ma il range dei valori ammissibili è compreso tra 0.01 e 0.50. Tuttavia il valore ottimale per l'elemento OPT Andes dipende dal coefficiente di Poisson v ed è $\beta_0=0,01$ per i materiali incomprimibili con v prossimo a v0,5 mentre viceversa è v0,5 se v1. Inoltre, se il materiale è ortotropo il valore ottimale per v0,0 è una funzione complicata dei coefficienti della matrice elastica. Se BET0=0 il programma calcola il valore ottimale a seconda delle proprietà del materiale.

ALP è un coefficiente simile a BET0, per l'elemento flessionale. Anche in questo caso esso è uno dei parametri del template che costruisce la matrice di rigidezza K ed in particolare coincide col parametro α legato alla componente basic K_b . La matrice K è ottenuta anche in questo caso come $K=K_b(\alpha)+K_h(\beta_i)$, in cui α e $\beta_i(i=1,36)$ sono i 37 parametri del template. Il parametro \cdot può variare tra $\alpha=0$ e $\alpha=1$ e ogni famiglia del template possiede un proprio valore ottimale α . Nel caso in cui ALP=0 il programma utilizzerà il valore tipico. Tuttavia, poiché una famiglia di elementi può esistere e rispondere in modo ottimale entro un range di valori α , l'utente ha la possibilità di intervenire per tarare finemente l'elemento alla specifica applicazione modificando il valore del parametro ma restando comunque in prossimità del valore tipico.

Il calcolo numerico degli integrali di volume è effettuato in posizioni prestabilite della superficie e dello spessore. I punti di integrazione nella superficie non coincidono con le posizioni dei nodi. E' ovvio che il comportamento sia in campo lineare che soprattutto in quello non lineare è legato allo stato su questi punti. Mentre la rigidezza complessiva dell'elemento e gli spostamenti risultano ben riprodotti, l'estrapolazione dei risultati di sforzo ai nodi introduce quindi delle approssimazioni che in campo non lineare coinvolgono anche la situazione locale del materiale. Nelle zone di forte non linearità è quindi sempre necessario infittire adeguatamente la mesh ed utilizzare i risultati calcolati in corrispondenza dei punti di integrazione, ovvero delle mezzerie dei lati. Le mezzerie dei lati sono infatti ubicate in corrispondenza della posizione di uno o più punti di integrazione.

OUTMNT al campo n.13 seleziona il gruppo di risultati e la posizione di calcolo delle quantità di output da monitorare, conservate nel file .MNT per una serie di elementi scelti con la linea C8 del modulo SOLVE. Il calcolo con materiale non lineare o con sezioni multistrato può generare una notevole quantità di risultati intermedi. Tuttavia solo 12 quantità per elemento possono trovar posto nel file .MNT. I risultati possono essere calcolati ai nodi o nelle mezzerie dei lati. Il codice OUTMNT è un intero composto da nove cifre, simbolicamente rappresentabile come xxxxyyyzz, secondo le regole elencate nella nota "Output Risultati di Elemento" della linea G.

IOPMAT è un flag che seleziona il modo con cui il programma calcola la matrice elastica tangente dei materiali non lineari nel tratto instabile a pendenza negativa. Questo parametro è provvisoriamente assegnato in questa linea dati e si applica quindi al solo elemento Shell62. Nelle future release esso potrebbe essere spostato a livello di struttura. Come noto, durante il calcolo non lineare la matrice di rigidezza dell'intera struttura può essere aggiornata ad ogni iterazione, solo all'inizio del substep, o in altre occasioni, a seconda del valore del parametro KALGO della linea C2 di SOLVE. Questo è possibile in quanto l'algoritmo di soluzione è di tipo incrementale-iterativo e non è necessario che la matrice di rigidezza coincida con la matrice tangente, a patto che sia effettuato un ciclo iterativo sufficiente a garantire le condizioni di equilibrio. I parametri di convergenza e le ampiezze di substep sono quindi maggiormente determinanti se la rigidezza è ricalcolata solo saltuariamente.

Il calcolo di una nuova matrice di rigidezza non significa necessariamente che essa sia il risultato dell'assemblaggio di matrici di rigidezza rigorosamente "tangenti" di tutti gli elementi. Ogni elemento può ricalcolare tale matrice in modo piuttosto arbitrario, anche perché il calcolo della vera matrice tangente potrebbe essere difficoltoso o avere conseguenze sgradevoli o difficoltà di convergenza. Di norma la costruzione della matrice tangente è preferibile in quanto la velocità di convergenza è elevata e la soluzione convergente finale del substep supera nettamente il criterio imposto.

Difficoltà possono aversi nel caso in cui la matrice di rigidezza si modifica a causa del comportamento non lineare del materiale nei tratti instabili, quando si supera il picco di resistenza e le curve σ-ε presentano un modulo tangente negativo. Questa situazione non è fisicamente possibile in campo statico, ma una sua soluzione approssimata può permettere di capire l'evoluzione o la tendenza del comportamento della struttura durante il collasso. Si possono tuttavia presentare situazioni in cui la soluzione diventa problematica a causa, ad esempio, della comparsa di ramificazioni nel percorso della curva carico-spostamento o instabilità numeriche. Vecchio (1989) e altri hanno proposto l'uso di matrici secanti o comunque la modifica dei moduli tangenti e l'utilizzo di moduli nulli nel tratto instabile.

Il Microsap adotta queste tecniche, ma la matrice costitutiva secante si traduce in una bassa velocità di convergenza che ne consiglia l'uso solo dopo il picco. Invece, fino al picco è impiegata la matrice tangente. Per default (IOPMAT=0 o IOPMAT=1) il programma calcolerà le matrici elastiche con i moduli tangenti, anche se questi sono negativi, eventualmente semplificando la matrice in matrice diagonale. Se tuttavia IOPMAT=2 il programma non consentirà la presenza di moduli negativi o nulli, ma li trasformerà in valori leggermente positivi (1×10^{-6}). Questo non significa che il materiale è disattivato quando raggiunge il picco di resistenza in quanto sforzi e deformazioni continuano ad essere calcolati secondo il legame costitutivo σ - ϵ assegnato, anche nel tratto instabile. Con IOPMAT=2 sarà però possibile esaminare il comportamento della struttura solo fino al collasso, ma non oltre.

Per quanto riguarda i materiali implementati, essi sono riassunti nella seguente tabella:

MATTYP	MATPAR(1)	MATPAR(2)	MATPAR(3)	MATPAR(4)	Tipo Materiale
0	ı	-	-	-	Lineare elastico simmetrico ortotropo
1	n. punti diagramma ε-σ	-	-	-	Non lineare elastico ortotropo simmetrico Von Mises
9	-	-	-	-	Non lineare simmetrico unidirezionale (Armatura)
10	n. punti diagramma ε-σ	Sottotipo 0,1,2	-	-	Non lineare ipoelastico non simmetrico Muratura e calcestruzzo generico
11	-	Tipo curva σ-ε compressione	Tipo curva σ-ε trazione	Tipo dominio di resistenza	Non lineare ipoelastico analitico calcestruzzo e similari

- MATTYP=0. Il materiale è di tipo lineare elastico ortotropo.
- MATTYP=1. Il materiale è a comportamento non lineare elastico: non esistono deformazioni plastiche residue allo scarico. Nel caso in cui il materiale sia scaricato (inversione da ϵ crescenti a ϵ decrescenti) la curva ϵ - σ è percorsa al contrario. La grandezza indice della resistenza è la ϵ_{EQV} = ϵ_{VM} (Epsilon equivalente=Epsilon di Von Mises) che è una quantità senza segno. Si suppone che la ϵ_{EQV} calcolata per lo stato di sforzo composto (generalmente triassiale) produca uno stato di sforzo equivalente a quello del provino caricato per trazione su un solo asse. Il materiale può essere ortotropo, con caratteristiche elastiche differenti lungo gli assi N-S. La matrice elastica non lineare per un qualunque stato di sforzo è ottenuta dalla matrice elastica iniziale (quella calcolata con i parametri della linea B3) moltiplicata per un coefficiente che è inversamente proporzionale al rapporto E_{eqv}/E_n tra i moduli elastici del diagramma ϵ - σ e del modulo elastico iniziale in direzione N. In altre parole, il materiale si ammorbidisce o si irrigidisce uniformemente in tutte le direzioni.
- MATTYP=9. Il materiale ha comportamento non lineare, simmetrico per stati di compressione e trazione. Esso reagisce solo lungo la direzione β, e non esistono contrazioni trasversali e scorrimenti di taglio. La curva ε-σ è una bilineare col primo tratto elastico fino a snervamento e secondo tratto incrudente con modulo tangente E_t eventualmente nullo. Questo tipo di materiale può essere definito solo entro sezioni multistrato. E' tipicamente utilizzato per schematizzare strati di armatura. E' possibile definire più armature con diverse direzioni, eventualmente alla stessa quota (baricentrica).
- MATTYP=10. Il materiale di tipo 10 può essere usato per simulare il comportamento della muratura o del calcestruzzo attraverso la assegnazione di un diagramma uniassiale tabulare σ-ε che può distinguere gli stati di compressione da quelli di trazione. Esistono differenti teorie per la modellazione di questi tipi di materiale, tra le quali ad esempio:
 - Modelli non lineari ipoelastici;
 - Modelli plastici;
 - Teorie endocroniche;
 - Microplane, ecc.

Le teorie basate su modelli plastici (utilizzanti ad esempio i criteri di Mohr-Coulomb, Drucker-Prager, ecc.) consentono di impiegare lo stesso schema di calcolo comune a molti altri tipi di materiali, modificando solo il criterio di resistenza. La difficoltà consiste nell'associare i risultati sperimentali di resistenza con una reale superficie di snervamento, data la natura fragile dei materiali. Le teorie endocroniche, microplane, continuum damage, ecc. riescono a riprodurre piuttosto fedelmente il reale comportamento, ma risultano eccessivamente complesse e onerose.

I modelli non lineari ipoelastici possono riprodurre in maniera soddisfacente il comportamento del calcestruzzo, della muratura e di materiali similari e sono relativamente semplici e veloci per poter essere implementati in un programma FEM non lineare. Essi risultano i più utilizzati e ne esistono diverse varianti che possono simulare diversi aspetti, come eventuali cicli di carico-scarico, la formazione di piani di frattura, il cedimento per compressione, la presenza di armatura e la differente resistenza per l'effetto di confinamento, aderenza dell'armatura, ecc.

Il materiale è definito ipoplastico se ha la proprietà di comportarsi in modo lineare elastico entro l'intervallo infinitesimo d ϵ -d σ o comunque sufficientemente piccolo. Nel calcolo non lineare le deformazioni nella struttura devono essere introdotte per step iterativi sufficientemente ridotti da percorrere fedelmente la curva ϵ - σ assegnata. Un'altra assunzione fondamentale è il concetto di deformazione uniassiale introdotto da Darwin e Pecknold col quale lo stato di sforzo-deformazione triassiale è disaccoppiato in tre distinte relazioni uniassiali. In pratica, noto lo sforzo in una direzione principale, la deformazione equivalente uniassiale nella stessa direzione è la stessa sia nello stato triassiale che uniassiale.

Il materiale è considerato inizialmente isotropo ed il suo comportamento ortotropo è indotto dal differente grado di deformazione nelle diverse direzioni. Risulta ovvio riferire quindi, ad ogni iterazione, le caratteristiche del materiale agli assi principali in cui le deformazioni o sforzi per taglio sono nulle. In generale le direzioni principali delle deformazioni non coincidono con quelle degli sforzi, ma con una opportuna legge di variazione dei moduli elastici questa caratteristica può essere soddisfatta. In questo caso l'angolo di orientamento β è calcolato e aggiornato automaticamente dal programma durante il calcolo.

Se si ipotizza che il materiale in un determinato punto sia arrivato alla sua resistenza ultima per trazione, la direzione principale 1 coinciderà con la perpendicolare al piano di frattura in quel punto. Da questo istante, il modulo elastico in direzione 1 sarà nullo. In generale, anche prima della rottura la direzione 1 è quella che possiede il valore massimo algebrico di deformazione (o sforzo) principale. A causa della ridistribuzione degli sforzi o della variazione di carico esterno l'orientamento del materiale varia continuamente e così anche i valori dei moduli elastici seguiranno le variazioni indotte dalla curva ϵ - σ assegnata.

All'insorgenza della frattura in un punto, gli assi di ortotropia dovrebbero rimanere congelati in queste direzioni per le iterazioni successive. Questo è in effetti il modello con piano di frattura fisso. Esiste un altro modello in cui il piano di frattura è considerato continuamente rotante. Nella realtà altri piani di frattura possono apparire dopo quello iniziale, anche perché fisicamente esiste nella realtà una elevata propensione al propagarsi delle fratture dopo il primo cedimento. Il modello a frattura rotante sembra rispondere meglio al reale comportamento. Esistono anche modelli che tengono conto di più piani di frattura. Il Microsap adotta il modello ipoelastico a frattura rotante.

La curva ϵ - σ per il calcestruzzo è di norma costruita analiticamente, suddividendola tra tratto in compressione e in trazione. I tratti iniziali elastici in compressione e trazione dovrebbero avere la stessa pendenza, coincidente con il modulo elastico iniziale definito nella linea B3. Oltre il limite elastico, il materiale non perviene generalmente a rottura improvvisa, ma il comportamento può presentare differenti stadi. Ad esempio, il cedimento in compressione può presentare un comportamento più o meno duttile a seconda dell'effetto di confinamento prodotto dalla presenza di staffatura.

Nel caso generale la presenza nella struttura di sforzi non nulli anche nelle altre direzioni provoca una modifica delle curve di resistenza uniassiali. Esistono diversi criteri e norme che codificano l'inviluppo delle curve di resistenza per il calcestruzzo. Nelle future release sono previsti diversi modelli per il calcestruzzo, in cui le curve analitiche ε - σ potranno essere tracciate utilizzando differenti combinazioni per le diverse fasi dello stato di cedimento per trazione/compressione e potranno essere applicati differenti criteri di resistenza per stati di sforzo su più assi.

Il materiale tipo 10 è analogo agli altri previsti per il calcestruzzo (tipo 11), con modello ipoelastico a frattura rotante, ma con l'unica differenza costituita dal fatto che la curva ε - σ è assegnata per punti come per il materiale tipo 1 e rimane invariata qualunque siano gli sforzi nelle altre direzioni. Questo modello può quindi rappresentare il comportamento della muratura o delle piastre in cui il carico ha una direzione prevalente. Il dominio di resistenza coincide in pratica con quello di Rankine e per stati biassiali di compressione-compressione produce risultati conservativi, mentre gli stati di compressione-trazione per livelli elevati di compressione possono essere in leggero difetto, se non si adotta una resistenza a trazione sufficientemente cautelativa.

Esistono tre differenti modalità di calcolo della matrice ipoelastica del materiale 10, che danno origine a tre sottotipi (0,1,2) caratterizzati da un grado di semplificazione crescente che consente anche risparmi di tempo di calcolo. Il sottotipo è assegnato con MATPAR(2). Il calcolo più rigoroso (consigliato) è effettuato per default (MATPAR(2)=0). Ad ogni iterazione è calcolato l'incremento di deformazione uniassiale equivalente a partire dalle deformazioni principali e la deformazione totale è ottenuta integrando la deformazione incrementale lungo il percorso di carico. Per ciascuno strato della shell, le deformazioni uniassiali vengono accumulate ad ogni iterazione in modo indipendente dalla deformazione della sezione e dipendono dalle caratteristiche della curva del materiale. Il risultato è un calcolo più rigoroso, ma a spese di una minore velocità di convergenza, che può essere anche 2 volte inferiore a quella del sottotipo 2. Il valore di picco del Fattore di Carico risulta in genere leggermente inferiore a quello che si ottiene con i sottotipi 1 e 2. Nei sottotipi 1 e 2 è effettuata l'ipotesi che le deformazioni uniassiali equivalenti coincidano con i valori correnti delle deformazioni principali. Nei sottotipi 0,1 lo stato di sforzo è calcolato direttamente per rotazione degli sforzi principali ottenuti dalle curve ϵ - σ . Viceversa, nel sottotipo 2 lo stato di sforzo è calcolato per rotazione della matrice elastica secante ottenuta dalle curve ϵ - σ . Il calcolo è più rapido ma il valore di picco del fattore di carico risulta leggermente sovrastimato.

- MATTYP=11. Il comportamento di questo materiale è come quello di tipo 10 (con sottotipo 0), ma se ne differenzia per le due caratteristiche seguenti:
 - La curva ε-σ è definita in modo parametrico ed è costruita con funzioni analitiche generalmente

continue e non attraverso un diagramma di punti a tratti lineari. MATPAR(1) non è usato e la curva è assegnata attraverso una serie di parametri specificati nella seguente linea B4. I parametri sono sufficientemente generali da poter essere utilizzati per la definizione di materiali diversi dal calcestruzzo o dalla muratura. E' possibile selezionare diversi tipi di curve, sia per la compressione (MATPAR(2)) che per la trazione (MATPAR(3)). Inoltre per ciascuna di esse è possibile distinguere il tratto \boldsymbol{I} di salita iniziale fino al picco di rottura ed il tratto discendente \boldsymbol{II} di post-rottura (softening): per questo MATPAR(1) e MATPAR(2) sono dei codici composti da due cifre. La prima cifra a sinistra seleziona il tratto \boldsymbol{I} e la seconda cifra il tratto \boldsymbol{II} .

- Al legame costitutivo ε-σ può essere associato un dominio di resistenza biassiale, con cui il programma può modificare automaticamente i livelli di picco (rottura) in una direzione principale a seconda dello stato di sforzo nell'altra direzione principale. Il dominio di resistenza è selezionato con MATPAR(4) (MATPAR(4)=0,1,2).

3 CONDIZIONI DI CARICO

EdiLus provvede in automatico a creare le condizioni di carico da applicare alla struttura. In particolare:

- Carichi permanenti;
- Carichi permanenti NON strutturali;
- Carichi verticali (variabili);
- Carico da neve;
- Carichi termici:
- Carichi sismici.

Nei carichi permanenti vengono computati il peso proprio della struttura e gli elementi non strutturali (solai, balconi, tamponature) con relativi sovraccarichi di tipo permanente. Nei carichi verticali vengono computati tutti i carichi variabili relativamente alle reali superfici d'influenza dei diversi elementi non strutturali su quelli strutturali.

I carichi termici vengono generati in automatico dal programma una volta definito per i vari elementi finiti il gradiente termico.

Anche i carichi sismici sono generati in automatico dal programma.

Per calcoli condotti con D.M. 96 (versioni ≤ 25.00d), il carico sismico verticale viene generato localmente per i vari elementi una volta settato per essi le seguenti tipologie:

- Membratura orizzontale con luce maggiore di 20 m.
- Struttura di tipo spingente.
- Struttura a sbalzo.

EdiLus determina automaticamente gli effetti dell'eccentricità accidentale, quando previsti in funzione della Normativa e del tipo di analisi sismica.

E' presente un'estesa libreria di condizioni di carico predefinite, risulta possibile creare nuove condizioni di carico in modo da modellare qualsiasi tipo di azione esterna di cui il progettista abbia necessità.

4 TIPI DI ANALISI

EdiLus, consente l'esecuzione dei seguenti tipi di analisi:

- a) Analisi Statica Lineare.
- b) Analisi Lineare Dinamica Modale.
- c) Analisi Statica Non Lineare.

4.1 Analisi Statica

L'analisi statica è condotta nell'ipotesi di linearità geometrica e di materiale. Per ogni elemento della struttura sussistono le relazioni:

$$[K]_e \{u\}_e = \{F\}_e$$
 1)

$$[S]_{e} \{u\}_{e} - \{\sigma_{0}\}_{e} = \{\sigma\}_{e}$$
 2)

dove:

[K]_e = matrice di rigidezza dell'elemento

{u}_e = vettore spostamenti e rotazioni nodali dell'elemento
 {F}_e = vettore delle forze generalizzate nodali dell'elemento

[S]_e = matrice sforzi-spostamenti dell'elemento

 $\{\sigma\}_{e}$ = vettore degli sforzi generalizzati dell'elemento

 $\{\sigma_o\}_e$ = vettore degli sforzi da campo termico

La prima relazione è quella che origina il sistema globale di equazioni risolto nel modulo SOLVE, con le incognite costituite dagli spostamenti dei nodi.

La seconda relazione è quella che permette il calcolo degli sforzi nel modulo STRES, una volta noti gli spostamenti nodali.

 $[K]_e$, $[S]_e$, $\{F\}_e$ e $\{\sigma_o\}_e$ sono costruite nei moduli elementi (BOUND, TRUSS, BEAMX, PLANE, SOLID, SHELL) in base alle coordinate dei nodi assegnate nel modulo INPUT, alla numerazione degli elementi, alle caratteristiche dei materiali e ai carichi di elemento.

Attraverso funzioni di interpolazione, generalmente diverse per i diversi tipi di elemento (funzioni di forma) è possibile descrivere il comportamento elastico in ogni punto solamente attraverso quantità definite in punti discreti, generalmente i nodi degli elementi, ma non necessariamente solo questi. La bontà della soluzione dipende da diversi fattori come:

- Le caratteristiche delle funzioni di forma anche al variare delle coordinate dei nodi dell'elemento.
- Il metodo di integrazione adottato.
- La perdita di precisione dell'algoritmo in generale, dovuto alla forma dell'elemento (singolarità per gli angoli, rapporto tra le lunghezze dei lati, non complanarità dei nodi).
- Le dimensioni assolute dell'elemento in rapporto al gradiente di sforzo locale.
- La vicinanza o meno per l'intera struttura a condizioni di singolarità (presenza di moti rigidi, alti gradienti di rigidezza).
- Lo scostamento dalle ipotesi iniziali di linearità con variazioni differenziali nella matrice di rigidezza e nel vettore dei carichi che non possono più ritenersi costanti (plasticizzazione del materiale, grandi spostamenti con variazione nella geometria dell'elemento e della reale situazione di carico).

Le dimensioni della matrice di rigidezza [K]e e del vettore {F}e dipendono dal numero totale di gradi di libertà dell'elemento, cioè dal numero di nodi e dal numero di gradi di libertà per nodo. Le dimensioni di [S]e dipendono anche dal numero di componenti di sforzo richieste.

Per gli elementi di tipo 2 (Beam) le dimensioni di [K]e e [S]e aumentano a seconda dei gradi di libertà di tipo master/slave utilizzati. Per gli elementi tipo 2, 3, 4, 5, 6 le dimensioni di [S]e dipendono dal numero di locazioni nell'elemento in cui è richiesto il calcolo degli sforzi. Il vettore delle forze nodali di elemento {F}e è il contributo di vari termini, spesso dipendenti dal tipo di elemento. Nel Microsap contribuiscono alla formazione di {F}e i carichi elencati nella tabella sequente.

Tipo Elemento	Carichi di Elemento
1	Accelerazione lungo X,Y,Z Carico termico
2	 Accelerazione lungo X,Y,Z Qualunque altro carico sull'elemento ottenuto con la composizione dei diversi carichi base
3	 Accelerazione lungo X,Y,Z Pressione sul piano Carico termico
4	 Forza centrifuga Accelerazione sul piano Y,Z Pressione Carico termico
5	 Pressioni sulle facce Carico termico Accelerazione lungo X,Y,Z Forza centrifuga
6	 Accelerazione lungo X,Y,Z Forza centrifuga Pressione normale al piano Carico dovuto a campo termico sul piano e a gradiente termico lungo lo spessore
7	Spostamento e rotazione imposti

Oltre ai termini sopra elencati entro $\{F\}_e$ devono intendersi inglobate le reazioni mutue tra gli elementi, che però non sono di fatto considerate poiché svaniscono al momento dell'assemblaggio degli elementi della struttura, e le forze concentrate ai nodi che però nel Microsap non sono assegnate a livello di elemento ma direttamente a livello di struttura, dopo l'assemblaggio. Entro il programma inoltre $\{F\}_e$ e $\{\sigma o\}_e$ sono in realtà delle matrici a 8 colonne, una per ogni caso di carico di elemento A, B, C, D,...,H.

Nel modulo SOLVE le matrici di rigidezza e dei carichi dei vari elementi sono assemblate assieme: con questa operazione sono così imposte le condizioni di congruenza ed equilibrio ai nodi ed è finalmente ottenuto il sistema lineare di equazioni:

$$[K]\{u\} = \{F\}$$
 3)

dove:

[K] = matrice di rigidezza della struttura

{u} = vettore spostamenti e rotazioni nodali della struttura

{F} = vettore forze nodali della struttura

In questa fase {F} riceve il contributo delle forze concentrate ai nodi, che erano state trascurate a livello di elemento. Entro il programma in effetti {u} e {F} sono delle matrici, con tante colonne quante sono le condizioni di carico sulla struttura.

La risoluzione del sistema globale è suddivisa in due fasi distinte:

a) Fattorizzazione della matrice dei coefficienti [K] nella forma:

$$[K] = [L][D][L]^T$$

in cui il fattore [L] è triangolare inferiore e [D] è diagonale.

La matrice [K] è simmetrica e a banda, per cui può essere memorizzata solo la semibanda. Anche [L] conserva questa caratteristica. Entro il programma, la stessa area può essere utilizzata per la memorizzazione di [K], per il fattore [L] in formazione e per [D] che è ospitato sulla diagonale di [L]. La semibanda di [K] o di [L][D] occupa un buffer che è vettorizzato entro il programma, per ragioni di spazio e velocità di calcolo. Se inoltre le dimensioni della matrice superano quelle del buffer il sistema è suddiviso in blocchi.

La fattorizzazione di [K] permette di scrivere il sistema originario come:

con:
$$\{x\} = \{F\}$$
 5) e:
$$\{y\} = [L]^T \{u\}$$
 7)

conduce alla risoluzione di tre sistemi banali in quanto il primo, che consente il calcolo di {x}, può essere affrontato contemporaneamente alla formazione di [L] ed è una semplice sostituzione poiché [L] è

triangolare. Gli altri due sistemi sono risolti nella fase successiva di "sostituzione all'indietro". Anche il vettore $\{x\}$ in formazione può essere ospitato nello stesso buffer che contiene i termini noti $\{F\}$.

Sostanzialmente il calcolo di [L] o più esattamente, quello di $[L]^T$ consiste nel rendere nulli i coefficienti sottostanti la diagonale principale e in tal senso l'algoritmo non è altro che il metodo di eliminazione di Gauss. Anche operativamente la fase di fattorizzazione consiste nella graduale modifica della matrice [K] che diventa $[D][L]^T$ e di $\{F\}$ che diventa $\{x\}$.

b) Sostituzione all'indietro con:

$$\{x\} = [D][L]^T \{u\}$$
 8)

Il calcolo di $\{u\}$ è ottenuto a partire dall'ultima equazione. L'ultima incognita u_n è ottenuta semplicemente da x_n/d_{nn} e le altre per progressiva sostituzione nelle equazioni che precedono, delle incognite già trovate e dividendo per d_{ii} . Entro il programma, il vettore $\{u\}$ in formazione occupa lo stesso buffer di $\{x\}$.

La fase di fattorizzazione di [K] costituisce una tappa obbligata anche durante un'analisi modale e l'analisi sismica presuppone l'esecuzione dell'estrazione modale. Tuttavia in un'analisi modale $\{F\}$ è tutto nullo. Non esiste quindi alcuna ragione per non effettuare l'analisi statica contemporaneamente ad un'analisi modale o sismica con spettro di risposta. In tal caso, se sono assegnate delle condizioni di carico, in questa fase il programma risolve anche il sistema statico: l'unica operazione, altrimenti non necessaria, che il programma effettua è il calcolo di $\{x\}$ e la fase b) di sostituzione all'indietro, entrambe di veloce esecuzione.

4.2 Analisi Modale

L'estrazione dei modi di vibrare del sistema non smorzato e non forzato, rappresentato dall'equazione di equilibrio:

$$M\ddot{\mathbf{u}} + K\mathbf{u} = \mathbf{0}$$
 9)

in cui:

Mü sono le forze d'inerzia e Ku sono le forze elastiche, ottenuta risolvendo il problema ad autovalori:

$$\mathsf{K}\Phi = \mathsf{M}\Phi\Omega^2 \tag{10}$$

dove:

 Φ = matrice degli auto vettori.

 Ω^2 = matrice diagonale degli auto valori.

Nelle ipotesi suddette la forma della soluzione della 9) è infatti:

$$u = U \cdot \sin(\omega t)$$
, 9a)

dove:

U = vettore delle ampiezze di spostamento.

 ω = pulsazione propria del sistema, da determinarsi con la soluzione della 10).

Generalmente parlando, se nel sistema sono assenti moti rigidi, K ed M sono entrambe definite positive, sono dello stesso ordine e hanno la stessa larghezza di banda.

Considerando invece le masse concentrate ai nodi degli elementi, la matrice di massa globale è diagonale. Questa è la schematizzazione adottata nel Microsap. Le matrici di massa di ogni elemento sono costruite nei moduli elementi e possono essere nulle se la densità del materiale è posta uguale a zero. Se l'elemento possiede anche gradi di libertà di rotazione, questi non hanno nessuna massa associata. Per queste due ragioni la matrice globale M può presentare termini diagonali nulli, ma ciò è consentito dall'algoritmo impiegato nella soluzione del sistema modale.

Esiste un altro modo per inserire masse nel sistema ed è quello di introdurle esplicitamente sui nodi con lo stesso sistema con cui sono assegnati i carichi concentrati. In questo modo è possibile definire sia masse traslanti lungo le tre direzioni globali X,Y,Z, sia componenti rotazionali attorno a questi assi. In ogni caso le masse concentrate ai nodi si aggiungono a quelle eventualmente derivanti dall'assemblaggio delle matrici di massa di elemento. La schematizzazione a masse concentrate con matrice diagonale e semidefinita positiva è una procedura piuttosto comune e giustificata dal fatto che il comportamento dinamico della struttura è più sensibile alle approssimazioni sulle rigidezze di quanto non lo sia per le caratteristiche inerziali.

Il metodo di soluzione del problema di autovalori adottati nel Microsap sono quelli noti come "Subspace Iteration" e "Block Lanczos". La loro scelta trae origine dal fatto che essi sono convenientemente applicabile per sistemi di grandi dimensioni e ben si adattano alla risoluzione a blocchi necessaria su un personal

computer. E' inoltre preservata la disposizione a banda delle matrici e la fase di fattorizzazione è eseguita una sola volta.

Generalmente in un problema strutturale dinamico i modi di vibrare possono essere ottenuti come sovrapposizione di pochi modi propri ed il contributo degli altri è trascurabile. Inoltre, nei casi comuni, l'input dinamico attraverserà i campi di frequenza propria più bassi, ma difficilmente interesserà le frequenze più elevate che inoltre sono anche quelle più smorzate.

Se si indica con p il numero di autovettori richiesti, la soluzione può essere ottenuta per iterazione simultanea di q vettori, con $q \ge p$, per una più rapida convergenza.

Indicando in sottoscritto le dimensioni delle matrici, la 10) può anche essere riscritta come:

$$\mathsf{K}_{\mathsf{nn}} \cdot \Phi_{\mathsf{nq}} = \mathsf{M}_{\mathsf{nn}} \cdot \Phi_{\mathsf{nq}} \cdot \Omega_{\mathsf{qq}}^{2} \,. \tag{11}$$

Sia ora G_{nq} una matrice di trasformazione che consenta di porre in relazione ogni autovettore a n dimensioni con uno a gradi di libertà ridotti a q:

$$\Phi_{nq} = G_{nq} \cdot \Phi_{qq} . \tag{12}$$

Sostituendo la 12) nella 11) e premoltiplicando per G_{nq}^{T} si ha:

$$G_{nq}^{\mathsf{T}} \cdot K_{nn} \cdot G_{nq} \cdot \Phi_{qq} = G_{nq}^{\mathsf{T}} \cdot M_{nn} \cdot G_{nq} \cdot \Phi_{qq} \cdot \Omega_{qq}^{2},$$
13)

ovvero:

$$\mathsf{K}_{\mathsf{qq}} \cdot \Phi_{\mathsf{qq}} = \mathsf{M}_{\mathsf{qq}} \cdot \Phi_{\mathsf{qq}} \cdot \Omega_{\mathsf{qq}}^2, \tag{14}$$

con:

$$\mathbf{K}_{qq} = \mathbf{G}_{nq}^{\mathsf{T}} \cdot \mathbf{K}_{nn} \cdot \mathbf{G}_{nq}, \tag{15}$$

e:

$$\mathbf{M}_{qq} = \mathbf{G}_{nq}^{\mathsf{T}} \cdot \mathbf{M}_{nn} \cdot \mathbf{G}_{nq} . \tag{16}$$

La trasformazione G_{nq} conduce quindi dal sistema originario di ordine n a quello "proiezione" nel sottospazio di ordine q. La trasformazione G_{nq} può essere scelta in modo che K_{qq} sia diagonale. Per le 15) e 16) e per il principio di ortogonalità tra gli autovettori, G_{nq} viene a coincidere proprio con la matrice Φ_{nq} degli autovettori e Φ_{qq} è una matrice identità.

Ovviamente G_{nq} non è nota inizialmente e deve essere scelta in modo appropriato, garantendo almeno che i q vettori siano linearmente indipendenti. In tal modo può essere innescata una procedura iterativa e se Φ_{nq} è ancora solo un'approssimazione ai reali autovettori, una nuova G_{nq} può essere ottenuta risolvendo il sistema 11) che può essere riscritto come:

$$K_{nn} \cdot G_{nq} = M_{nn} \cdot \Phi_{nq} \cdot \Omega_{qq}^{2} .$$
 17)

Nel Microsap l'intera sequenza si articola nei seguenti step:

- a) Composizione dei vettori iniziali G_{nq} secondo una procedura automatica basata sull'esame dei coefficienti di K_{nn} e M_{nn} ed eventualmente ai numeri di equazioni base dichiarati dall'utente.
- b) Calcolo di $K_{\alpha\alpha}$ e $M_{\alpha\alpha}$ iniziali con le 15) e le 16).
- c) Risoluzione del sistema proiezione 14) e calcolo di tutti i suoi autovettori Φ_{qq} e autovalori associati Φ^2_{qq} . La diagonalizzazione di K_{qq} e M_{qq} è affrontata col metodo di Jacobi eseguendo fino ad un massimo di 20 iterazioni, se necessario. L'andamento della diagonalizzazione può essere mostrato su video, se richiesto.
- d) Calcolo di Φ_{nq} con la 12): se è raggiunta la precisione richiesta o il numero massimo di iterazioni assegnato, la procedura ha termine. Di ogni autovettore è noto solamente il rapporto tra le componenti per cui $\alpha\Phi$, con α un qualunque numero reale, rappresenta la stessa forma modale. Nel Microsap gli autovettori sono normalizzati rispetto alla componente maggiore in valore assoluto.
- e) Calcolo di $X_{nq} = M_{nn} \cdot \Phi_{nq} \cdot \Omega_{qq}^2$.
- f) Risoluzione del sistema 17) utilizzando la matrice K_{nn} fattorizzata:

$$(L_{nn}^{\mathsf{T}} \cdot D_{nn} \cdot L_{nn}) \cdot G_{nq} = Y_{nq}$$
.

g) Col nuovo valore G_{nq} sono trovate, con la 15) e 16):

$$K_{qq} = G_{nq}^{\mathsf{T}} \cdot Y_{nq}$$
 ; $M_{qq} = G_{nq}^{\mathsf{T}} \cdot M_{nn} \cdot G_{nq}$.

h) Ritorno al punto c) per un'altra iterazione.

La risoluzione del sistema 14) deve essere effettuata in memoria centrale così, generalmente la massima dimensione q è determinata dallo spazio disponibile per allocare K_{qq} , M_{qq} , Φ_{qq} e Φ^2_{qq} . Poiché K_{qq} e M_{qq} sono simmetriche, di esse è registrata solo la parte superiore, compresa la diagonale ed inoltre Φ^2_{qq} è diagonale. Nel Microsap un'area di 8190 locazioni è riservata per contenere Φ_{qq} e Φ^2_{qq} , mentre un'altra area delle stesse dimensioni contiene K_{qq} e M_{qq} . Deve perciò essere: $q^2 + q \le 8190$, cioè la dimensione del sottospazio non può essere maggiore di 90.

Entro i vari step le stesse aree di memoria sono condivise da altre quantità. Nel passo f), ad esempio essa sarà riservata per contenere i blocchi della matrice, fattorizzata entro SOLVE, che transitano in memoria durante la soluzione del sistema.

Quando q=n il sistema proiezione risolto al punto c) coincide con quello completo: in questo caso particolare la procedura termina sempre al punto d) alla prima iterazione e si riduce al metodo di Jacobi applicato per trovare tutte le frequenze proprie del sistema. L'analisi modale può eventualmente essere condotta su un corpo libero, dotato cioè di moti rigidi. Tale situazione può essere simulata sopprimendo la singolarità con una serie di supporti elastici (elementi Boundary) dotati di piccola rigidezza.

4.3 Analisi Statica Non Lineare

Esistono diversi tipi di non linearità che possono essere considerate nei calcoli strutturali. Ad esempio:

- Non linearità di materiale assegnata attraverso curve sforzo-deformazione. Le curve possono essere anche diverse per trazione e compressione o mancanti (materiale resistente solo a trazione e/o a compressione).
- Non linearità nel comportamento dell'elemento. Ad esempio un elemento monodimensionale potrebbe assumere tre stati: reagente a sola trazione, non reagente, reagente a sola compressione.
- Grandi spostamenti, piccole rotazioni e piccole deformazioni (Updated Lagrangian).
- Stress-stiffening (non linearità geometrica).

In EdiLus si prende in considerazione la non linearità di materiale.

La risoluzione di un sistema strutturale in analisi lineare è relativamente semplice: caricando con una forza esterna F assiale un'asta, di sezione A e lunghezza L, costituita da materiale per cui valga sempre la relazione $\sigma = E \cdot \epsilon$ (E = modulo elastico normale costante ed ϵ = deformazione unitaria), la soluzione è immediata.

Infatti, detta R (= $E \cdot A/L$) la rigidezza assiale dell'asta, si utilizza la seguente equazione:

$$R \cdot \delta = F \tag{1}$$

da cui lo spostamento dell'asta $\delta = F/R$.

Ad es. per: F = 100000, E = 1000, A = 1000 e L = 10, si ottiene:

$$\delta = \frac{100000 \cdot 10}{1000 \cdot 1000} = 1 \qquad \qquad \Rightarrow \qquad \qquad \text{da cui si ricava} \qquad \qquad \Rightarrow \qquad \qquad \epsilon = \frac{\delta}{L} = \frac{1}{10} = 0.1.$$

Se quindi si entra nel diagramma (lineare) σ - ε con ε = 0.1, si ottiene, per l'appunto:

$$\sigma = E \cdot \varepsilon = 1000 \cdot 0.1 = 100$$
.

Naturalmente si sarebbe giunti al medesimo risultato applicando direttamente $\sigma = F/A$.

Ciò è però vero solo in casi semplici come quello illustrato, mentre in realtà è sempre necessario passare per la formulazione che prevede la costruzione della matrice di rigidezza.

Se il materiale non ha un comportamento lineare non è possibile un calcolo diretto ma occorre effettuare un calcolo iterativo.

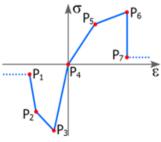
In EdiLus il comportamento di un materiale viene descritto dal diagramma, che ne rappresenta il cosiddetto legame costitutivo.

Nel caso più generale valgono le seguenti considerazioni:

a) I punti $(\sigma$ - $\epsilon)$ del diagramma vanno assegnati in ordine crescente di deformazione, quindi:

$$\varepsilon_1 \le \varepsilon_2 \le \varepsilon_3 \le ...$$

Se la deformazione è rappresentata sull'asse delle ascisse, il diagramma viene tracciato sul primo quadrante ($\epsilon \geq 0$ e $\sigma \geq 0$) e sul terzo quadrante ($\epsilon \leq 0$ e $\sigma \leq 0$).



- b) Deformazioni positive originano sforzi positivi (trazione). Viceversa, deformazioni negative originano sforzi negativi (compressione). Un punto del diagramma coincide con l'origine, ovvero $\varepsilon=0$ e $\sigma=0$.
- c) Sono gestiti correttamente i casi di materiali non resistenti a trazione (assenza di punti nel 1º quadrante) o non resistenti a compressione (assenza di punti nel 3º quadrante).
- d) Il diagramma $(\sigma \epsilon)$ è ottenuto congiungendo con tratti rettilinei i punti assegnati. Durante il calcolo non lineare, per trovare il valore di σ corrispondente al valore di ϵ corrente, si interpola linearmente tra i due punti che racchiudono ϵ . Se ϵ cade esternamente agli estremi, il valore di σ è uguale al valore dell'estremo, cioè il diagramma continua con pendenza nulla oltre gli estremi.
- e) Il valore della pendenza $E_t = d\sigma/d\epsilon$, letto in corrispondenza del valore corrente di deformazione ϵ , è il Modulo Tangente del materiale che viene utilizzato per calcolare la matrice di rigidezza tangente. Il modulo tangente può essere negativo(nell'analisi non lineare non è richiesto che la matrice di rigidezza della struttura sia definita positiva a patto di utilizzare un opportuno metodo di soluzione che contempli questa evenienza).

Ipotizziamo un materiale col seguente comportamento:

- 1) per $\varepsilon \le 0.05$ è linearmente elastico con legge $\sigma = 1000 \cdot \varepsilon$.
- 2) per ε > 0,05 è linearmente elastico, ma con legge σ = 500 $\cdot \varepsilon$.

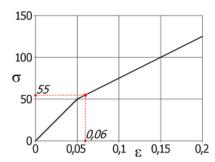
Nel caso precedentemente esaminato risulta evidente che il procedimento prima seguito non sia più valido, in quanto la rigidezza (E.A/L) non è più un valore univoco, ma dipende dalle deformazioni del materiale che, a loro volta dipendono dall'entità della forza esterna. Il sistema dovrà allora risolversi iterativamente con una procedura del genere:

- 1) Si applica inizialmente solo una parte della forza esterna, ad esempio il 20%. Sia 20000 N la forza applicata.
- 2) Si risolve il sistema (1), utilizzando il valore iniziale di E (=1000).
- 3) Si calcola: $\delta = \frac{20000 \cdot 10}{1000 \cdot 1000} = 0.2$.
- 4) Si controlla che, con lo spostamento trovato, le forze che nascono nell'asta (beam) siano pari a 20000 N: $\varepsilon = \delta/L = 0.2/10 = 0.02$, da cui $\Rightarrow \sigma = 1000 \cdot 0.02 = 20$. Pertanto, la forza interna F_i esplicata dal beam è pari a $F_i = \sigma \cdot A = 20 \cdot 1000 = 20000$.

Quindi, per una forza esterna pari a 20000 N, effettivamente l'asta è in grado di esplicare una reazione interna pari a 20000. In questo caso si dice che la soluzione è convergente.

- 5) Si incrementa la forza esterna a 40000 N e si rieffettuano i punti 2) 3) e 4). È facile verificare che, allo spostamento δ =0,4, corrisponde una σ =40 e, quindi, la forza interna F_i =40000. Il sistema è ancora equilibrato, quindi la soluzione è convergente.
- 6) Si incrementa la forza esterna a 60000 N. La soluzione di primo tentativo è δ =0,6 \Rightarrow ϵ =0,06. Poiché ϵ >0,05, non si può semplicemente calcolare σ = ϵ ·E, ma occorrerà leggerla sul diagramma (σ - ϵ) del materiale in corrispondenza del punto ϵ =0,06 \Rightarrow σ =55. Moltiplicando il valore di tale σ per l'area A, si risale alla nuova forza interna che sarà pari a F_i = 55 ·1000 =55000 N. Valore sensibilmente diverso da 60000N.

7) Ciò non significa che l'asta non è in grado di resistere a 60000 N, ma che il tentativo effettuato (con E=1000) non è convergente. Si sceglie quindi un valore più basso di E a partire proprio dalla soluzione ottenuta con le forze interne; se infatti le forze interne sono pari a 55000 N, la σ è pari a 55000/1000=55. Dividendo 55 per la ε ottenuta nel precedente tentativo (0,06) si ottiene un nuovo valore del modulo elastico E=916,67.



8) Con questo valore si reiterano i calcoli fino a raggiungere (se esiste) la soluzione con il grado di precisione desiderato; si riportano i calcoli effettuati nella tabella sequente:

F _e	Ei	Α	L	R	δ	8	Fi	E _f
20 000N	1000.00	1000.00	10.00	100000.00	0.20	0.0200	20000.00	1000.00
40 000N	1000.00	1000.00	10.00	100000.00	0.40	0.0400	40000.00	1000.00
60 000N	1000.00	1000.00	10.00	100000.00	0.60	0.0600	55000.00	916.67
60 000N	916.67	1000.00	10.00	91666.67	0.65	0.0655	57727.27	881.94
60 000N	881.94	1000.00	10.00	88194.44	0.68	0.0680	59015.75	867.48
60 000N	867.48	1000.00	10.00	86747.69	0.69	0.0692	59583.06	861.45
60 000N	861.45	1000.00	10.00	86144.87	0.70	0.0697	59825.06	858.94
60 000N	858.94	1000.00	10.00	85893.70	0.70	0.0699	59926.89	857.89
60 000N	857.89	1000.00	10.00	85789.04	0.70	0.0699	59969.50	857.45
60 000N	857.45	1000.00	10.00	85745.43	0.70	0.0700	59987.29	857.27
60 000N	857.27	1000.00	10.00	85727.26	0.70	0.0700	59994.70	857.20
60 000N	857.20	1000.00	10.00	85719.69	0.70	0.0700	59997.79	857.17

In essa sono riportati:

 F_e = Forza Esterna applicata.

E_i = Modulo Elastico di tentativo per la costruzione dell'equazione (1).

A = Area dell'elemento Beam.

L = Lunghezza dell'elemento Beam.

R = Rigidezza dell'elemento Beam nella generica Iterazione.

 δ = Spostamento trovato in corrispondenza di Fe, pari a Fe/(E \cdot A/L).

 ε = deformazione corrispondente a d, pari a δ/L .

 F_i = Forza esplicata dall'elemento Beam per effetto della deformazione ε; in corrispondenza di ε si legge, sul diagramma (σ-ε), il valore di σ, quindi si moltiplica tale valore per A.

Si vede come man mano vi sia una convergenza tra F_e e F_i ; quando la differenza tra i due valori è trascurabile, si può ritenere che la soluzione per quel valore di F_e sia stata trovata e, quindi, si può passare ad un successivo incremento di carico (portando F_e a 80000 N).

 Si effettuano tutte le calcolazioni incrementando F_e fino a 100000 N; i risultati vengono riportati nella tabella seguente:

F _e	Ei	Α	L	R	δ	ε	Fi	E _f
80 000N	857,17	1000,00	10,00	85716,54	0,93	0,0933	71665,44	767,86
80 000N	767,86	1000,00	10,00	76786,42	1,04	0,1042	77092,55	739,96
80 000N	739,96	1000,00	10,00	73995,76	1,08	0,1081	79057,15	731,24
80 000N	731,24	1000,00	10,00	73123,67	1,09	0,1094	79701,85	728,51
80 000N	728,51	1000,00	10,00	72851,15	1,10	0,1098	79906,48	727,66
80 000N	727,66	1000,00	10,00	72765,98	1,10	0,1099	79970,74	727,39
80 000N	727,39	1000,00	10,00	72739,37	1,10	0,1100	79990,85	727,31
80 000N	727,31	1000,00	10,00	72731,05	1,10	0,1100	79997,14	727,28
100 000N	727,28	1000,00	10,00	72728,45	1,37	0,1375	93748,88	681,82
100 000N	681,82	1000,00	10,00	68182,11	1,47	0,1467	98333,02	670,46
100 000N	670,46	1000,00	10,00	67045,53	1,49	0,1492	99576,19	667,61
100 000N	667,61	1000,00	10,00	66761,38	1,50	0,1498	99893,60	666,90
100 000N	666,90	1000,00	10,00	66690,35	1,50	0,1499	99973,37	666,73
100 000N	666,73	1000,00	10,00	66672,59	1,50	0,1500	99993,34	666,68
100 000N	666,68	1000,00	10,00	66668,15	1,50	0,1500	99998,34	666,67

Si noti come il primo tentativo per 80000 N sia stato effettuato con i valori trovati alla fine dello Step in cui F_e =60000 N. Si noti inoltre che la soluzione trovata comporta un allungamento dell'asta pari a 1,5 volte quella ottenuta per l'analoga asta a comportamento elastico lineare. Ciò evidenzia chiaramente come un

materiale le cui caratteristiche degradino all'aumentare della deformazione, abbia bisogno di maggiori spostamenti per contrastare le sollecitazioni esterne.

Non è detto che sia sempre possibile trovare una soluzione equilibrata.

Nell'esempio illustrato ciò è dovuto all'aver ipotizzato un comportamento indefinitamente plastico e incrudente ["indefinitamente" in quanto non è stato posto limite alle deformazioni che il materiale può sopportare (per $\varepsilon=10 \Rightarrow \sigma=5000$); "incrudente" in quanto si è ipotizzato che, al termine della fase elastica, la tensione continui ad aumentare all'aumentare delle deformazioni, sia pure con pendenza dimezzata].

Il materiale potrebbe avere, come per i comuni materiali da costruzione, una deformazione oltre la quale la resistenza non cresce più, o addirittura decresce, o si annulla del tutto.

Se si ipotizza il seguente comportamento:

- 1) per $\varepsilon \le 0.05$ è linearmente elastico con legge $\sigma = 1000 \cdot \varepsilon$;
- 2) per $0.05 < \varepsilon \le 0.1$ è linearmente elastico, ma con legge $\sigma = 500 \cdot \varepsilon$;
- 3) per ε >0,1 la tensione è nulla.

Nella successiva tabella si riportano i risultati del calcolo per questo comportamento del materiale:

F_e	E _i	Α	L	R	δ	8	Fi	E _f
20 000N	1000,00	1000,00	10,00	100000,00	0,2000	0,0200	20000,00	1000,00
40 000N	1000,00	1000,00	10,00	100000,00	0,4000	0,0400	40000,00	1000,00
60 000N	1000,00	1000,00	10,00	100000,00	0,6000	0,0600	55000,00	916,67
60 000N	916,67	1000,00	10,00	91666,67	0,6545	0,0655	57727,27	881,94
60 000N	881,94	1000,00	10,00	88194,44	0,6803	0,0680	59015,75	867,48
60 000N	867,48	1000,00	10,00	86747,69	0,6917	0,0692	59583,06	861,45
60 000N	861,45	1000,00	10,00	86144,87	0,6965	0,0697	59825,06	858,94
60 000N	858,94	1000,00	10,00	85893,70	0,6985	0,0699	59926,89	857,89
60 000N	857,89	1000,00	10,00	85789,04	0,6994	0,0700	59969,50	857,45
60 000N	857,45	1000,00	10,00	85745,43	0,6997	0,0700	59987,29	857,27
60 000N	857,27	1000,00	10,00	85727,26	0,6999	0,0700	59994,70	857,20
80 000N	857,20	1000,00	10,00	85719,69	0,9333	0,0933	71663,72	767,87
80 000N	767,87	1000,00	10,00	76787,40	1,0418	0,1042	75000,00	750,00
80 000N	750,00	1000,00	10,00	75000,00	1,0667	0,1067	75000,00	750,00
70 000N	750,00	1000,00	10,00	75000,00	0,9333	0,0933	71666,67	767,86
70 000N	767,86	1000,00	10,00	76785,71	0,9116	0,0912	70581,40	774,23
70 000N	774,23	1000,00	10,00	76423,47	0,9041	0,0904	70205,93	776,51
70 000N	776,51	1000,00	10,00	77651,24	0,9015	0,0902	70073,33	777,33
70 000N	777,33	1000,00	10,00	77732,59	0,9005	0,0901	70026,16	777,62
70 000N	777,62	1000,00	10,00	77761,64	0,9002	0,0900	70009,34	777,72
77 000N	777,72	1000,00	10,00	77772,01	0,9901	0,0990	74503,67	752,51
77 000N	752,51	1000,00	10,00	75250,65	1,0232	0,1023	75000,00	750,00
77 000N	750,00	1000,00	10,00	75000,00	1,0267	0,1027	75000,00	750,00
73 500N	750,00	1000,00	10,00	75000,00	0,9800	0,0980	74000,00	755,10
73 500N	755,10	1000,00	10,00	75510,20	0,9734	0,0973	73668,92	756,84
73 500N	756,84	1000,00	10,00	75683,74	0,9711	0,0971	73557,32	757,43
73 500N	757,43	1000,00	10,00	75742,77	0,9704	0,0970	73519,48	757,63

Si pone l'attenzione su quanto segue:

- 1) In corrispondenza di F_e =80000 non si riesce a trovare F_e = F_i ; al momento è ipotizzabile che 80000 N sia un valore che eccede le capacità dell'asta.
- 2) È comunque indispensabile effettuare qualche altro tentativo per vedere se la struttura sia comunque in grado di resistere ad un valore maggiore di 60000 N. Ipotizzando 70000 N si nota che si riesce a trovare l'equilibrio fra forze esterne ed interne (la struttura resiste a tale sollecitazione).
- 3) Incrementando a 77000 N il calcolo non converge(il valore eccede la capacità dell'asta).
- 4) Si incrementa a 73500 N e si nota che $F_e=F_i$, ossia l'equilibrio fra forze esterne ed interne viene raggiunto. Quindi si può affermare che l'asta resiste almeno a 73500 N.
- 5) In questo semplice esempio iterando i calcoli è facile vedere come il valore ultimo di F_e che l'asta è in grado di "sopportare" è pari a 75000 N.

In questo esempio sono presenti tutti gli elementi per poter ora comprendere le modalità di risoluzione di un sistema non lineare.

Per riepilogare e agganciarci ai parametri presenti in EdiLus si introduce la seguente terminologia:

Step di Carico

Uno **step** di carico è una configurazione di carico per la quale è assolutamente richiesta la soluzione (nell' esempio 100000 N). Nell'analisi lineare i diversi step di carico sono anche chiamati "condizioni di carico della struttura" e partono tutti dalla configurazione scarica. Nell'analisi non lineare, nei diversi step di carico, i carichi si cumulano. E' quindi importante la sequenza con cui i carichi vengono introdotti nei diversi step.

Ad esempio, nell'analisi statica di un edificio in muratura il primo step può essere costituito dai soli carichi accidentali e peso proprio, che dovrebbe rimanere in campo lineare. Il secondo step potrebbe essere costituito da un sistema di carichi nodali laterali assegnati nella configurazione di massimo.

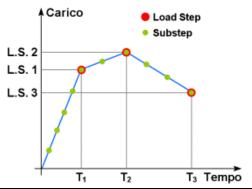
Substep

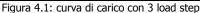
I **substep** sono punti intermedi entro lo step corrente nei quali è ottenuta la soluzione (nel nostro esempio partiamo da 20000 N). Queste soluzioni intermedie sono calcolate introducendo il nuovo carico gradualmente in modo tale da ottenere un risultato accurato a fine step.

Le soluzioni ottenute nei substep sono equilibrate e valide a tutti gli effetti; è solo sufficiente conoscere a quale livello di carico λ esse corrispondono. Valgono le relazioni:

$$F(t) = F(T_{i-1}) + \lambda \big[F(T_i) - F(T_{i-1}) \big] \\ \lambda = \frac{F(t) - F(T_{i-1})}{F(T_i) - F(T_{i-1})} = \frac{t - T_{i-1}}{T_i - T_{i-1}}$$

in cui F(t) è il valore del carico in corrispondenza della fine del substep. $F(T_{i-1})$ è il livello di carico assegnato allo step precedente e $F(T_i)$ è il livello di carico assegnato allo step corrente. λ è il fattore di incremento di carico nello step corrente ed è sempre posto = 0 all'inizio ed = 1 alla fine dello step. In EdiLus l'ultimo step può essere estrapolato per valori $\lambda > 1$.





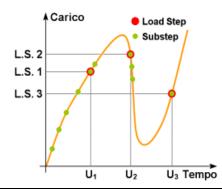


Figura 4.2: soluzione nella curva carichi spostamenti

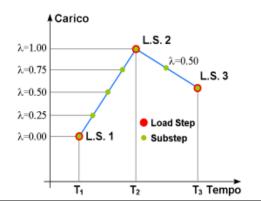


Figura 4.3: substep e fattori di carico

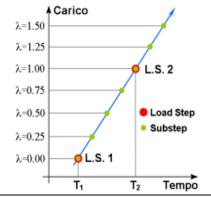


Figura 4.4: continuazione ultimo Load Step per $\lambda > 1$

Nella Figura 4.1 è rappresentata la curva di carico con 3 load step (cerchi rossi). Il primo step è suddiviso in 5 substep (cerchi verdi), il secondo in 2 substep e il terzo in 3 substep, per un totale di 10 soluzioni convergenti (equilibrate), che rappresentano altrettanti punti della curva Carichi-Spostamenti (Figura 4.2).

La curva presenta un punto limite di instabilità e un minimo; all'aumentare dello spostamento e, a seconda dei parametri di soluzione forniti (ampiezza substep, criteri di convergenza, ecc.) per gli stessi livelli di carico, possono essere trovate le soluzioni sul secondo o sul terzo ramo.

Se il carico del load step n.3 fosse maggiore di quello del load step n.2, le soluzioni verrebbero trovate sul terzo ramo.

La Figura 4.3 e Figura 4.4 mostrano la relazione di proporzionalità tra substep e fattori di carico. Il fattore di carico è nullo all'inizio di ogni nuovo step e unitario alla fine di ogni step, quando l'introduzione del nuovo livello di carico è completata. Nella Figura 4.4, tuttavia, il carico dello step è esteso oltre il valore assegnato, per fattori di carico maggiori di 1.

Tolleranza

La tolleranza è la differenza tra F_e e F_i che si è disposti ad accettare affinché una soluzione venga ritenuta convergente.

Iterazioni di Equilibrio

Le iterazioni di equilibrio sono anch'esse soluzioni intermedie calcolate in corrispondenza del livello di carico finale del substep [quindi per lo stesso livello di carico F(t)], fino ad ottenere la soluzione convergente del substep.

Questo ciclo correttivo si rende necessario poiché le soluzioni sono comunque lineari e il cammino seguito si discosterebbe progressivamente dalla reale curva caratteristica forze-spostamenti non lineare della struttura, anche utilizzando passi molto piccoli tra i substep ed aggiornando continuamente la matrice di rigidezza.

Ad ogni iterazione è quindi calcolata la differenza ΔF tra forze esterne assegnate e forze interne indotte negli elementi. Tale differenza è quindi applicata nell'iterazione successiva e ridistribuita finché essa non raggiunge un valore trascurabile.

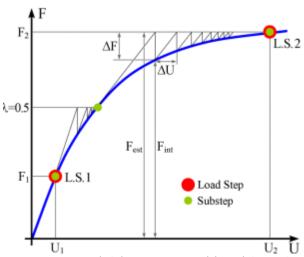


Figura 4.5: esempio di Soluzione Iterativa del Load Step n.2 con Modified Newton-Raphson e 2 Substep (D_{Lamb} =0.5)

La presenza del ciclo iterativo di equilibrio fa si che la convergenza possa essere raggiunta utilizzando una rigidezza anche diversa da quella che la struttura effettivamente possiede nel punto di calcolo (v. Figura 4.5).

EdiLus, essendo una procedura automatica, possiede una serie di parametri su cui intervenire per migliorare la convergenza, come ad esempio, solo per citarne alcuni:

- **DLamb** (**Incremento nominale del fattore di carico tra i substep**) con cui è possibile fissare il valore iniziale di un SubStep.
- **DLmin** (**Minimo incremento di fattore di carico**), con cui si fissa un valore minimo al disotto del quale non si vuole scendere per l'ampiezza del SubStep.
- EpsF (Tolleranza Forze x Convergenza) e EpsM (Tolleranza Momenti x Convergenza), rappresentano le tolleranze affinché un SubStep venga considerato convergente.

Ma ve ne sono molti altri.

Si tenga infine presente che il solutore di EdiLus, il MicroSap Tesys, risolve le strutture in murature in regime non lineare discretizzandole con elementi shell, pertanto, come tutti i solutori agli elementi finiti, è sensibile alla dimensione media della mesh utilizzata per gli elementi shell.

5 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

Al termine del calcolo delle sollecitazioni, EdiLus procede in automatico al progetto e alla verifica delle armature degli elementi strutturali.

Il dimensionamento delle membrature allo SLU avviene col seguente procedimento:

- 1. si costruiscono le combinazioni in base al D.M. 17.01.2018, ottenendo un insieme di sollecitazioni;
- 2. si combinano tali sollecitazioni con quelle dovute alla azione del sisma (in base al D.M. 17.01.2018);
- 3. per sollecitazioni semplici (flessione retta, taglio, torsione) si individuano i valori minimo e massimo con cui progettare o verificare l'elemento considerato; per sollecitazioni composte (pressoflessione retta/deviata) vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò si individua quella che ha originato il minimo coefficiente di sicurezza.

Illustriamo in dettaglio il procedimento seguito per i pilastri, che sono sollecitati sempre in regime di pressoflessione deviata, e per le travi per le quali non è possibile semiprogettare a pressoflessione retta:

per tutte le terne M_x , M_y , N_z , individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza con un procedimento iterativo in base all'armatura adottata; se per almeno una di queste terne esso è inferiore all'unità, si incrementa l'armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando il coefficiente di sicurezza risulta maggiore o al più uguale all'unità per tutte le terne considerate.

Nei tabulati di calcolo, per brevità, non potendo riportare una così grossa mole di dati, si riporta la terna M_x , M_y , N che ha dato luogo al minimo coefficiente di sicurezza. Ma è possibile esportare in un file formato ".CSV" (formato che può essere aperto e gestito con Microsoft Excel), tutte le sei caratteristiche delle sollecitazioni per ogni combinazione di carico, per ciascuna sezione di ogni singolo elemento. In questo modo si possono visualizzare tutte le terne M_x , M_y , N (presso flessione deviata) o le coppie M, N (presso flessione retta) con relativo coefficiente di sicurezza.

Una volta semiprogettate le armature allo SLU, si procede alla verifica delle sezioni allo Stato Limite di Esercizio con le sollecitazioni derivanti dalle combinazioni rare, frequenti e quasi permanenti; se necessario, le armature vengono integrate per far rientrare le tensioni e la eventuale fessurazione entro i massimi valori previsti dalla norma.

6 LINK CASI PROVA

Link -> CASI PROVA CEMENTO ARMATO NUOVO

- 1. (CA-New) Test di Validazione n.01 (Piastra Rettangolare)
- 2. (CA-New) Test di Validazione n.02 (Pilastro Incastrato)
- 3. (CA-New) Test di Validazione n.03 (Trave Continua Solaio)
- 4. (CA-New) Test di Validazione n.04 (Confronto Ansys)
- 5. (CA-New) Test di Validazione n.05 (Semiprogetto a Flessione)
- 6. (CA-New) Test di Validazione n.06 (Verifiche Bicchiere)
- 7. (CA-New) Test di Validazione n.07 (Verifica Dettagli di Duttilità Pilastri)
- 8. (CA-New) Test di Validazione n.08 (Verifica Dettagli di Duttilità Setti)

Link -> CASI PROVA CEMENTO ARMATO ESISTENTE

- 1. (CA-Old) Test di Validazione n.01 (Livello di Conoscenza)
- 2. (CA-Old) Test di Validazione n.02 (Calcolo Resistenza Calcestruzzo)
- 3. (CA-Old) Test di Validazione n.03 (Placcaggio a Flessione Trave con FRP)
- 4. (CA-Old) Test di Validazione n.04 (Placcaggio a Taglio Trave con FRP ad U)
- 5. (CA-Old) Test di Validazione n.05 (Placcaggio a Taglio Trave con FRP ad avvolgimento completo)
- 6. (CA-Old) Test di Validazione n.06 (Incremento Altezza Trave)
- 7. (CA-Old) Test di Validazione n.07 (Incamiciatura in C.A. Pilastro)
- 8. (CA-Old) Test di Validazione n.08 (Cerchiatura in AC Pilastro)
- 9. (CA-Old) Test di Validazione n.09 (Cerchiatura Pilastro con FRP)
- 10. (CA-Old) Test di Validazione n.10 (Confinamento Nodo con FRP)
- 11. (CA-Old) Test di Validazione n.11 (Allargamento Fondazione)
- 12. (CA-Old) Test di Validazione n.12 (Rinforzo Parete con Betoncino)
- 13. (CA-Old) Test di Validazione n.13 (Rinforzo Parete con FRP)
- 14. (CA-Old) Test di Validazione n.14 (Rotazione alla Corda)

Link -> CASI PROVA MURATURA

- 1. (MU) Test di Validazione n.01 (Verifiche Maschi/Fasce)
- 2. (MU) Test di Validazione n.02 (Analisi Statica Non Lineare)
- 3. (MU) Test di Validazione n.03 (Muratura con Betoncino Armato)
- 4. (MU) Test di Validazione n.04 (Muratura con FRP)
- 5. (MU) Test di Validazione n.05 (Muratura Armata)
- 6. (MU) Test di Validazione n.06 (Ribaltamento)
- 7. (MU) Test di Validazione n.07 (Spanciamento ed azioni sulle Catene)
- 8. (MU) Test di Validazione n.08 (Verifiche Capochiave e Catena)
- 9. (MU) Test di Validazione n.09 (Valutazione Accelerazioni di Collasso)
- 10. (MU) Test di Validazione n.10 (Calcolo Parametri ASNL)
- 11. (MU) Test di Validazione n.11 (Calcolo T_{RC} PGA)
- 12. (MU) Test di Validazione n.12 (Muratura con FRCM)

Link -> CASI PROVA ACCIAIO

- 1. (AC) Test di Validazione n.01 (Verifica Instabilità Pilastro Acciaio)
- 2. (AC) Test di Validazione n.02 (Verifica Trave Acciaio)
- 3. (AC) Test di Validazione n.03 (Gerarchia Travi Acciaio)
- 4. (AC) Test di Validazione n.04 (Gerarchia Pilastri Acciaio)
- 5. (AC) Test di Validazione n.05 (Instabilità N Pilastri Classe 4)
- 6. (AC) Test di Validazione n.06 (Instabilità a PFD Pilastri)

Link -> CASI PROVA LEGNO

- 1. (LG) Test di Validazione n.01 (Verifica Travi)
- 2. (LG) Test di Validazione n.02 (Verifica Pilastri)

Link -> CASI PROVA GEOTECNICA

- 1. (GEO) Test di Validazione n.01 (Trave Winkler)
- 2. (GEO) Test di Validazione n.02 (Verifica di Carico Limite)
- 3. (GEO) Test di Validazione n.03 (Spinta Terreno)
- 4. (GEO) Test di Validazione n.04 (Qlim Pali in terreno monostrato)
- 5. (GEO) Test di Validazione n.05 (Qlim Pali in stratigrafia)
- 6. (GEO) Test di Validazione n.06 (Rigidezze Plinto)
- 7. (GEO) Test di Validazione n.07 (Sollecitazioni Verifiche Plinto BASSO)